Four-manifolds with π1-free second homotopy

被引:4
作者
Spaggiari, F [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dipartimento Matemat, I-41100 Modena, Italy
关键词
D O I
10.1007/s00229-003-0371-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the homotopy type of closed connected orientable topological 4-manifolds M with Lambda-free second homotopy group, where Lambda is the integral group ring of pi(1)(M). This is related with problem N.4.53 of [23], and extends some results proved for the class of closed 4-manifolds with free fundamental group [10][11]. Other applications on special classes of closed topological manifolds complete the paper.
引用
收藏
页码:303 / 320
页数:18
相关论文
共 33 条
[21]  
KAWAUCHI A, 1994, OSAKA J MATH, V31, P489
[22]  
KAWAUCHI A, 2000, ATTI SEMIN MAT FIS, V48, P405
[23]  
KRUSHKAL VS, IN PRESS SURG CLOSED
[24]  
MACLANE S, 1963, HOMOLOGY SPRINGER VE
[25]   4-DIMENSIONAL TOPOLOGY - INTRODUCTION [J].
MANDELBAUM, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 2 (01) :1-159
[26]  
May J.P., 1975, MEM AM MATH SOC, V155
[27]   WHITEHEAD TORSION [J].
MILNOR, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (03) :358-&
[28]   NON-SIMPLY-CONNECTED SURGERY AND SOME RESULTS IN LOW DIMENSIONAL TOPOLOGY [J].
SHANESON, JL .
COMMENTARII MATHEMATICI HELVETICI, 1970, 45 (03) :333-&
[29]   POINCARE COMPLEXES .I. [J].
WALL, CTC .
ANNALS OF MATHEMATICS, 1967, 86 (02) :213-&
[30]  
WALL CTC, 1970, AM MATH SOC, V69