Symmetric invariant bilinear forms on modular vertex algebras

被引:6
作者
Li, Haisheng [1 ]
Mu, Qiang [2 ]
机构
[1] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
[2] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R China
关键词
Vertex operator algebra; OPERATOR-ALGEBRAS; INTEGRAL FORMS; ARBITRARY FIELD; MOONSHINE;
D O I
10.1016/j.jalgebra.2018.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study contragredient duals and invariant bilinear forms for modular vertex algebras (in characteristic p). We first introduce a bialgebra H and we then introduce a notion of H-module vertex algebra and a notion of (V,H)-module for an H-module vertex algebra V. Then we give a modular version of Frenkel-Huang-Lepowsky's theory and study invariant bilinear forms on an H-module vertex algebra. As the main results, we obtain an explicit description of the space of invariant bilinear forms on a general H-module vertex algebra, and we apply our results to affine vertex algebras and Virasoro vertex algebras. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:435 / 465
页数:31
相关论文
共 17 条
[1]  
[Anonymous], 1972, GRAD TEXTS MATH
[3]   Modular moonshine, III [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 1998, 93 (01) :129-154
[4]   Modular moonshine .2. [J].
Borcherds, RE ;
Ryba, AJE .
DUKE MATHEMATICAL JOURNAL, 1996, 83 (02) :435-459
[5]  
Dong C., 2017, ARXIV170904167
[6]   VERTEX OPERATOR ALGEBRAS ASSOCIATED TO THE VIRASORO ALGEBRA OVER AN ARBITRARY FIELD [J].
Dong, Chongying ;
Ren, Li .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (07) :5177-5196
[7]   Representations of vertex operator algebras over an arbitrary field [J].
Dong, Chongying ;
Ren, Li .
JOURNAL OF ALGEBRA, 2014, 403 :497-516
[8]   Integral forms in vertex operator algebras which are invariant under finite groups [J].
Dong, Chongying ;
Griess, Robert L., Jr. .
JOURNAL OF ALGEBRA, 2012, 365 :184-198
[9]  
Frenkel I., 1988, VERTEX OPERATOR ALGE
[10]  
FRENKEL IGOR B., 1993, MEM AM MATH SOC, V104, DOI [DOI 10.1090/MEMO/0494.198, 10.1090/memo/0494, DOI 10.1090/MEMO/0494]