EXISTENCE OF SOLUTION FOR SOME SINGULAR KIRCHHOFF FRACTIONAL BOUNDARY VALUE PROBLEM

被引:0
作者
Ghanmi, Abdeljabbar [1 ]
机构
[1] Univ Jeddah, Fac Sci, Dept Math, Jeddah, Saudi Arabia
来源
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES | 2022年 / 17卷 / 02期
关键词
Fractional derivative; boundary value problems; variational methods; existence of solutions; POSITIVE SOLUTIONS; EQUATION;
D O I
10.21915/BIMAS.2022203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we investigate the question of the existence of multiple solutions for some nonlinear singular p-fractional problem with Riemann-Liouville fractional derivative and of Kirchhoff type. Precisely, we employ the method of the Nehari manifold combined with the analysis of the fibering map in order to show the existence of at least two nontrivial weak solutions.
引用
收藏
页码:173 / 194
页数:22
相关论文
共 27 条
[11]   A fractional-order model for MINMOD Millennium [J].
Cho, Yongjin ;
Kim, Imbunm ;
Sheen, Dongwoo .
MATHEMATICAL BIOSCIENCES, 2015, 262 :36-45
[12]   Inverse problem of fractional calculus of variations for partial differential equations [J].
Cresson, Jacky .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (04) :987-996
[13]   GLOBAL SOLVABILITY FOR THE DEGENERATE KIRCHHOFF EQUATION WITH REAL ANALYTIC DATA [J].
DANCONA, P ;
SPAGNOLO, S .
INVENTIONES MATHEMATICAE, 1992, 108 (02) :247-262
[14]   Positive solutions for the p-Laplacian: application of the fibrering method [J].
Drabek, P ;
Pohozaev, SI .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :703-726
[15]   Existence Results Involving Fractional Liouville Derivative [J].
Ghanmi, A. ;
Althobaiti, M. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (05) :93-102
[16]   EXISTENCE OF POSITIVE SOLUTIONS FOR A COUPLED SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Ghanmi, A. ;
Horrigue, S. .
UKRAINIAN MATHEMATICAL JOURNAL, 2019, 71 (01) :39-49
[17]   A multiplicity results for a singular problem involving the fractional p-Laplacian operator [J].
Ghanmi, A. ;
Saoudi, K. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (09) :1199-1216
[18]  
Ghanmi A, 2019, B KOREAN MATH SOC, V56, P1297
[19]  
Ghanmi K., 2016, FRACTIONAL DIFFER CA, V6, P201, DOI DOI 10.7153/FDC-06-13
[20]   Modelling of the hamstring muscle group by use of fractional derivatives [J].
Grahovac, N. M. ;
Zigic, M. M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1695-1700