Finite time blow-up for damped wave equations with space-time dependent potential and nonlinear memory

被引:11
作者
Dannawi, I. [1 ]
Kirane, M. [2 ,3 ,4 ]
Fino, A. Z. [5 ]
机构
[1] Lebanese Int Univ, Dept Math, Fac Sci, Tripoli, Lebanon
[2] King Abdulaziz Univ, NAAM Res Grp, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[3] Univ La Rochelle, LaSIE, Pole Sci & Technol, Ave Michel Crepeau, F-17031 La Rochelle, France
[4] RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
[5] Lebanese Univ, Dept Math, Fac Sci 3, Tripoli, Lebanon
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2018年 / 25卷 / 05期
关键词
Nonlinear damped wave equation; Local existence; Blow-up; Subcritical potential; CRITICAL EXPONENT; GLOBAL EXISTENCE; STABILITY;
D O I
10.1007/s00030-018-0533-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem in R-N, n >= 1, for semilinear damped wave equations with space-time dependent potential and nonlinear memory. A blow-up result under some positive data in any dimensional space is obtained. Moreover, the local existence in the energy space is also studied.
引用
收藏
页数:19
相关论文
共 27 条
[11]   Global existence for elastic waves with memory [J].
Georgiev, V ;
Rubino, B ;
Sampalmieri, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (03) :303-330
[12]  
Ikawa M., 2000, Translations of Mathematical Monographs
[13]   Global existence of solutions for semilinear damped wave equations in RN with noncompactly supported initial data [J].
Ikehata, R ;
Tanizawa, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (07) :1189-1208
[14]   Critical Exponent for Semilinear Wave Equations with Space-Dependent Potential [J].
Ikehata, Ryo ;
Todorova, Grozdena ;
Yordanov, Borislav .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2009, 52 (03) :411-435
[15]  
Kilbas A. A., 2006, Theory and applications of fractional differential equations, Vvol. 204
[16]   Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives [J].
Kirane, M ;
Laskri, Y ;
Tatar, NE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) :488-501
[17]  
Li T. T., 1995, DISCRETE CONT DYNAM, V1, P503
[18]   CRITICAL EXPONENT FOR THE SEMILINEAR WAVE EQUATION WITH TIME-DEPENDENT DAMPING [J].
Lin, Jiayun ;
Nishihara, Kenji ;
Zhai, Jian .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (12) :4307-4320
[19]   STABILITY FOR 2ND ORDER ABSTRACT EVOLUTION-EQUATIONS [J].
MARCATI, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (03) :237-252
[20]   DECAY AND STABILITY FOR NONLINEAR HYPERBOLIC-EQUATIONS [J].
MARCATI, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 55 (01) :30-58