Finite time blow-up for damped wave equations with space-time dependent potential and nonlinear memory

被引:11
作者
Dannawi, I. [1 ]
Kirane, M. [2 ,3 ,4 ]
Fino, A. Z. [5 ]
机构
[1] Lebanese Int Univ, Dept Math, Fac Sci, Tripoli, Lebanon
[2] King Abdulaziz Univ, NAAM Res Grp, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
[3] Univ La Rochelle, LaSIE, Pole Sci & Technol, Ave Michel Crepeau, F-17031 La Rochelle, France
[4] RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
[5] Lebanese Univ, Dept Math, Fac Sci 3, Tripoli, Lebanon
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2018年 / 25卷 / 05期
关键词
Nonlinear damped wave equation; Local existence; Blow-up; Subcritical potential; CRITICAL EXPONENT; GLOBAL EXISTENCE; STABILITY;
D O I
10.1007/s00030-018-0533-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Cauchy problem in R-N, n >= 1, for semilinear damped wave equations with space-time dependent potential and nonlinear memory. A blow-up result under some positive data in any dimensional space is obtained. Moreover, the local existence in the energy space is also studied.
引用
收藏
页数:19
相关论文
共 27 条
[1]  
CAZENAVE T, 1990, INTRO PROBLEMES EVOL
[2]   The influence of a nonlinear memory on the damped wave equation [J].
D'Abbicco, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :130-145
[3]   A wave equation with structural damping and nonlinear memory [J].
D'Abbicco, Marcello .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2014, 21 (05) :751-773
[4]  
Debnath L, 2007, Integral Transforms and Their Applications, DOI DOI 10.1201/9781420010916
[5]  
Fino A.Z, FINITE TIME BL UNPUB
[6]   Decay of mass for nonlinear equation with fractional Laplacian [J].
Fino, Ahmad ;
Karch, Grzegorz .
MONATSHEFTE FUR MATHEMATIK, 2010, 160 (04) :375-384
[7]   QUALITATIVE PROPERTIES OF SOLUTIONS TO A TIME-SPACE FRACTIONAL EVOLUTION EQUATION [J].
Fino, Ahmad Z. ;
Kirane, Mokhtar .
QUARTERLY OF APPLIED MATHEMATICS, 2012, 70 (01) :133-157
[8]   Critical exponent for damped wave equations with nonlinear memory [J].
Fino, Ahmad Z. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) :5495-5505
[9]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[10]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308