Dimension Results for Space-anisotropic Gaussian Random Fields

被引:3
作者
Ni, Wen Qing [1 ,2 ]
Chen, Zhen Long [1 ]
Wang, Wei Gang [1 ]
机构
[1] Zhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Peoples R China
[2] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
基金
中国国家自然科学基金;
关键词
Hausdorff dimension; packing dimension; gaussian random field; uniform dimension;
D O I
10.1007/s10114-018-8016-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X={X(t)Rd,tRN} be a centered space-anisotropic Gaussian random field whose components satisfy some mild conditions. By introducing a new anisotropic metric in (d), we obtain the Hausdorff and packing dimension in the new metric for the image of X. Moreover, the Hausdorff dimension in the new metric for the image of X has a uniform version.
引用
收藏
页码:391 / 406
页数:16
相关论文
共 14 条
[1]  
Adler R. J., 1981, GEOMETRY RANDOM FIEL
[2]  
Estrade A., 2011, COMMUN STOCH ANAL, V5, P41
[3]  
Falconer K., 2003, FRACTAL GEOMETRY MAT, V2nd, DOI DOI 10.1002/0470013850
[4]   Packing dimensions of projections and dimension profiles [J].
Falconer, KJ ;
Howroyd, JD .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1997, 121 :269-286
[5]  
Kaufman R., 1968, CR HEBD ACAD SCI, V268, P727
[6]  
Khoshnevisan D, 2006, ELECTRON J PROBAB, V11, P817
[7]  
Mattilla P., 1995, Geometry of Sets and Measures in Euclidean Spaces
[8]  
Monrad D., 1987, PROGR PROBABILITY ST, P163
[9]   UNIFORM DIMENSION RESULTS FOR THE BROWNIAN SHEET [J].
MOUNTFORD, TS .
ANNALS OF PROBABILITY, 1989, 17 (04) :1454-1462
[10]   Uniform dimension results for Gaussian random fields [J].
Wu DongSheng ;
Xiao YiMin .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (07) :1478-1496