Computing the ankle-brachial index with parallel computational fluid dynamics

被引:6
作者
Gounley, John [1 ]
Draeger, Erik W. [2 ]
Oppelstrup, Tomas [2 ]
Krauss, William D. [2 ]
Gunnels, John A. [3 ]
Chaudhury, Rafeed [4 ]
Nair, Priya [4 ]
Frakes, David [4 ]
Leopold, Jane A. [5 ]
Randles, Amanda [1 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27706 USA
[2] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA
[3] IBM Res Div, Thomas J Watson Res Ctr, Yorktown Hts, NY USA
[4] Arizona State Univ, Dept Biol & Hlth Syst Engn, Tempe, AZ USA
[5] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Hemodynamics; Computational fluid dynamics; Ankle-brachial index; LATTICE-BOLTZMANN METHOD; ENDOTHELIAL SHEAR-STRESS; SCIENTIFIC STATEMENT; BOUNDARY-CONDITIONS; NATURAL-HISTORY; BLOOD-FLOW; COARCTATION; MODEL; HEMODYNAMICS; SIMULATIONS;
D O I
10.1016/j.jbiomech.2018.10.007
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The ankle-brachial index (ABI), a ratio of arterial blood pressure in the ankles and upper arms, is used to diagnose and monitor circulatory conditions such as coarctation of the aorta and peripheral artery disease. Computational simulations of the ABI can potentially determine the parameters that produce an ABI indicative of ischemia or other abnormalities in blood flow. However, 0- and 1-D computational methods are limited in describing a 3-D patient-derived geometry. Thus, we present a massively parallel framework for computational fluid dynamics (CFD) simulations in the full arterial system. Using the lattice Boltzmann method to solve the Navier-Stokes equations, we employ highly parallelized and scalable methods to generate the simulation domain and efficiently distribute the computational load among processors. For the first time, we compute an ABI with 3-D CFD. In this proof-of-concept study, we investigate the dependence of ABI on the presence of stenoses, or narrowed regions of the arteries, by directly modifying the arterial geometry. As a result, our framework enables the computation a hemodynamic factor characterizing flow at the scale of the full arterial system, in a manner that is extensible to patient-specific imaging data and holds potential for treatment planning. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:28 / 37
页数:10
相关论文
共 58 条
[1]   Measurement and Interpretation of the Ankle-Brachial Index A Scientific Statement From the American Heart Association [J].
Aboyans, Victor ;
Criqui, Michael H. ;
Abraham, Pierre ;
Allison, Matthew A. ;
Creager, Mark A. ;
Diehm, Curt ;
Fowkes, F. Gerry R. ;
Hiatt, William R. ;
Joensson, Bjoern ;
Lacroix, Philippe ;
Marin, Benoit ;
McDermott, Mary M. ;
Norgren, Lars ;
Pande, Reena L. ;
Preux, Pierre-Marie ;
Stoffers, H. E. ;
Treat-Jacobson, Diane .
CIRCULATION, 2012, 126 (24) :2890-+
[2]   The visible human project [J].
Ackerman, MJ .
PROCEEDINGS OF THE IEEE, 1998, 86 (03) :504-511
[3]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[4]  
[Anonymous], PHYS REV E
[5]  
[Anonymous], 2011, P 2011 INT C HIGH PE, DOI DOI 10.1145/2063384.2063390
[6]  
[Anonymous], VIS HUM PROJ
[7]  
[Anonymous], RELATION LATTICE VAR
[8]   Mesoscopic simulations of systolic flow in the human abdominal aorta [J].
Artoli, AM ;
Hoekstra, AG ;
Sloot, PMA .
JOURNAL OF BIOMECHANICS, 2006, 39 (05) :873-884
[9]   Congenital Heart Disease in the Older Adult A Scientific Statement From the American Heart Association [J].
Bhatt, Ami B. ;
Foster, Elyse ;
Kuehl, Karen ;
Alpert, Joseph ;
Brabeck, Stephen ;
Crumb, Stephen ;
Davidson, William R., Jr. ;
Earing, Michael G. ;
Ghoshhajra, Brian B. ;
Karamlou, Tara ;
Mital, Seema ;
Ting, Jennifer ;
Tseng, Zian H. .
CIRCULATION, 2015, 131 (21) :1884-1931
[10]   Signed distance computation using the angle weighted pseudonormal [J].
Bærentzen, JA ;
Aanæs, H .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2005, 11 (03) :243-253