Algebraic entropy of amenable group actions

被引:13
作者
Virili, Simone [1 ]
机构
[1] Univ Murcia, Fac Matemat, Campus Espinardo, E-30100 Murcia, Spain
关键词
Length functions; Gabriel dimension; Algebraic entropy; Amenable groups; Zero divisors; Stable finiteness;
D O I
10.1007/s00209-018-2192-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring, let G be an amenable group and let RG be a crossed product. The goal of this paper is to construct, starting with a suitable additive function L on the category of left modules over R, an additive function on a subcategory of the category of left modules over RG, which coincides with the whole category if L(RR)<. This construction can be performed using a dynamical invariant associated with the original function L, called algebraic L-entropy. We apply our results to two classical problems on group rings: the stable finiteness and the zero-divisors conjectures.
引用
收藏
页码:1389 / 1417
页数:29
相关论文
共 31 条
[1]  
[Anonymous], 2006, New Mathematical Monographs
[2]  
[Anonymous], 2010, CELLULAR AUTOMATA GR
[3]   Stable finiteness of group rings in arbitrary characteristic [J].
Ara, P ;
O'Meara, KC ;
Perera, F .
ADVANCES IN MATHEMATICS, 2002, 170 (02) :224-238
[4]   The Garden of Eden theorem for linear cellular automata [J].
Ceccherini-Silberstein, T ;
Coornaert, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2006, 26 :53-68
[5]  
Chung N. -P, 2013, ARXIV13025813
[6]   ALGEBRAIC ENTROPY FOR ABELIAN GROUPS [J].
Dikranjan, Dikran ;
Goldsmith, Brendan ;
Salce, Luigi ;
Zanardo, Paolo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) :3401-3434
[7]   Sofic groups and direct finiteness [J].
Elek, G ;
Szabó, E .
JOURNAL OF ALGEBRA, 2004, 280 (02) :426-434
[8]   The rank of finitely generated modules over group algebras [J].
Elek, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (11) :3477-3485
[9]   The Euler characteristic of discrete groups and Yuzvinskii's entropy addition formula [J].
Elek, G .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 :661-664
[10]  
Facchini A., 1998, Module theory, Modern Birkhauser Classics