Thermodynamics of concentrated solid solution alloys

被引:159
作者
Gao, M. C. [1 ,2 ]
Zhang, C. [3 ]
Gao, P. [4 ]
Zhang, F. [3 ]
Ouyang, L. Z. [4 ]
Widom, M. [5 ]
Hawk, J. A. [1 ]
机构
[1] Natl Energy Technol Lab, Albany, OR 97321 USA
[2] AECOM, POB 1959, Albany, OR 97321 USA
[3] CompuTherm LLC, Middleton, WI 53562 USA
[4] Tennessee State Univ, Nashville, TN 37209 USA
[5] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
HIGH-ENTROPY ALLOYS; PHASE-STABILITY; MECHANICAL-PROPERTIES; 1ST-PRINCIPLES CALCULATION; VIBRATIONAL ENTROPY; MICROSTRUCTURE; AL; BEHAVIOR; DESIGN; RECRYSTALLIZATION;
D O I
10.1016/j.cossms.2017.08.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper reviews the three main approaches for predicting the formation of concentrated solid solution alloys (CSSA) and for modeling their thermodynamic properties, in particular, utilizing the methodologies of empirical thermo-physical parameters, CALPHAD method, and first-principles calculations combined with hybrid Monte Carlo/Molecular Dynamics (MC/MD) simulations. In order to speed up CSSA development, a variety of empirical parameters based on Hume-Rothery rules have been developed. Herein, these parameters have been systematically and critically evaluated for their efficiency in predicting solid solution formation. The phase stability of representative CSSA systems is then illustrated from the perspectives of phase diagrams and nucleation driving force plots of the sigma phase using CALPHAD method. The temperature-dependent total entropies of the FCC, BCC, HCP, and sigma phases in equimolar compositions of various systems are presented next, followed by the thermodynamic properties of mixing of the BCC phase in Al-containing and Ti-containing refractory metal systems. First-principles calculations on model FCC, BCC and HCP CSSA reveal the presence of both positive and negative vibrational entropies of mixing, while the calculated electronic entropies of mixing are negligible. Temperature dependent configurational entropy is determined from the atomic structures obtained from MC/MD simulations. Current status and challenges in using these methodologies as they pertain to thermodynamic property analysis and CSSA design are discussed. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:238 / 251
页数:14
相关论文
共 90 条
[1]   TETRAHEDRON APPROXIMATION OF THE CLUSTER VARIATION METHOD FOR BCC ALLOYS [J].
ACKERMANN, H ;
INDEN, G ;
KIKUCHI, R .
ACTA METALLURGICA, 1989, 37 (01) :1-7
[2]  
[Anonymous], 1935, P ROY SOC A-MATH PHY, DOI DOI 10.1098/RSPA.1935.0122
[3]  
[Anonymous], 2016, HIGH ENTROPY ALLOYS
[4]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[5]   Phase diagram calculation: past, present and future [J].
Chang, YA ;
Chen, SL ;
Zhang, F ;
Yan, XY ;
Xie, FY ;
Schmid-Fetzer, R ;
Oates, WA .
PROGRESS IN MATERIALS SCIENCE, 2004, 49 (3-4) :313-345
[6]   A STUDY OF TERNARY GEOMETRICAL MODELS [J].
CHOU, KC ;
CHANG, YA .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1989, 93 (06) :735-741
[7]   Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J].
Chuang, Ming-Hao ;
Tsai, Ming-Hung ;
Wang, Woei-Ren ;
Lin, Su-Jien ;
Yeh, Jien-Wei .
ACTA MATERIALIA, 2011, 59 (16) :6308-6317
[8]   AFLOW: An automatic framework for high-throughput materials discovery [J].
Curtarolo, Stefano ;
Setyawan, Wahyu ;
Hart, Gus L. W. ;
Jahnatek, Michal ;
Chepulskii, Roman V. ;
Taylor, Richard H. ;
Wanga, Shidong ;
Xue, Junkai ;
Yang, Kesong ;
Levy, Ohad ;
Mehl, Michael J. ;
Stokes, Harold T. ;
Demchenko, Denis O. ;
Morgan, Dane .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 :218-226
[9]   Structure of some CoCrFeNi and CoCrFeNiPd multicomponent HEA alloys by diffraction techniques [J].
Dahlborg, U. ;
Cornide, J. ;
Calvo-Dahlborg, M. ;
Hansen, T. C. ;
Fitch, A. ;
Leong, Z. ;
Chambreland, S. ;
Goodall, R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 681 :330-341
[10]   High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy) [J].
Daoud, H. M. ;
Manzoni, A. M. ;
Wanderka, N. ;
Glatzel, U. .
JOM, 2015, 67 (10) :2271-2277