Substrate Stiffness and Oxygen as Regulators of Stem Cell Differentiation during Skeletal Tissue Regeneration: A Mechanobiological Model

被引:70
作者
Burke, Darren Paul [1 ,2 ]
Kelly, Daniel John [1 ,2 ]
机构
[1] Trinity Coll Dublin, Trinity Biomed Sci Inst, Trinity Ctr Bioengn, Dublin, Ireland
[2] Trinity Coll Dublin, Dept Mech & Mfg Engn, Sch Engn, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
ENDOTHELIAL GROWTH-FACTOR; MECHANO-REGULATION MODEL; BONE REGENERATION; DISTRACTION OSTEOGENESIS; BIOPHYSICAL STIMULI; GAP SIZE; IN-VIVO; CARTILAGE; TENSION; ANGIOGENESIS;
D O I
10.1371/journal.pone.0040737
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC) differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.
引用
收藏
页数:12
相关论文
共 78 条
[1]   VARIATIONS IN THE INTRINSIC MECHANICAL PROTERTIES OF HUMAN ARTICULAR-CARTILAGE WITH AGE, DEGENERATION, AND WATER-CONTENT [J].
ARMSTRONG, CG ;
MOW, VC .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1982, 64 (01) :88-94
[2]   A mathematical framework to study the effects of growth factor influences on fracture healing [J].
Bailón-Plaza, A ;
van der Meulen, MCH .
JOURNAL OF THEORETICAL BIOLOGY, 2001, 212 (02) :191-209
[3]  
Bian LM, 2012, TISSUE ENG PT A, V18, P715, DOI [10.1089/ten.tea.2011.0455, 10.1089/ten.TEA.2011.0455]
[4]   Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period [J].
Boccaccio, A. ;
Prendergast, P. J. ;
Pappalettere, C. ;
Kelly, D. J. .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2008, 46 (03) :283-298
[5]   The influence of expansion rates on mandibular distraction osteogenesis: A computational analysis [J].
Boccaccio, A. ;
Pappalettere, C. ;
Kelly, D. J. .
ANNALS OF BIOMEDICAL ENGINEERING, 2007, 35 (11) :1940-1960
[6]   A Mechano-Regulation Model of Fracture Repair in Vertebral Bodies [J].
Boccaccio, Antonio ;
Kelly, Daniel J. ;
Pappalettere, Carmine .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2011, 29 (03) :433-443
[7]   Mechanical regulation of vascular growth and tissue regeneration in vivo [J].
Boerckel, Joel D. ;
Uhrig, Brent A. ;
Willett, Nick J. ;
Huebsch, Nathaniel ;
Guldberg, Robert E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (37) :E674-E680
[8]  
BRUETON RN, 1990, CLIN ORTHOP RELAT R, P286
[9]   Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes [J].
Buckley, C. T. ;
Vinardell, T. ;
Kelly, D. J. .
OSTEOARTHRITIS AND CARTILAGE, 2010, 18 (10) :1345-1354
[10]  
Byrne DP, 2011, J ORTHOP RES