NONEQUILIBRIUM SHEAR VISCOSITY COMPUTATIONS WITH LANGEVIN DYNAMICS

被引:11
|
作者
Joubaud, Remi [1 ,2 ]
Stoltz, Gabriel [3 ]
机构
[1] ANDRA, DRD EAP, F-92298 Chatenay Malabry, France
[2] Univ Paris Est, CERMICS, Ecole Ponts ParisTech, F-77455 Marne La Vallee, France
[3] Ecole Ponts ParisTech, INRIA, MICMAC Project Team, F-77455 Marne La Vallee, France
来源
MULTISCALE MODELING & SIMULATION | 2012年 / 10卷 / 01期
关键词
nonequilibrium molecular dynamics; hypocoercivity; linear response theory; shear viscosity; MOLECULAR-DYNAMICS; PERIODIC HOMOGENIZATION; IRREVERSIBLE-PROCESSES; STATISTICAL-MECHANICS; NONERGODICITY; SIMULATIONS; COMPUTER;
D O I
10.1137/110836237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the mathematical properties of a nonequilibrium Langevin dynamics which can be used to estimate the shear viscosity of a system. More precisely, we prove a linear response result which allows us to relate averages over the nonequilibrium stationary state of the system to equilibrium canonical expectations. We then write a local conservation law for the average longitudinal velocity of the fluid and show how, under some closure approximation, the viscosity can be extracted from this profile. We finally characterize the asymptotic behavior of the velocity profile, in the limit where either the transverse or the longitudinal friction goes to infinity. Some numerical illustrations of the theoretical results are also presented.
引用
收藏
页码:191 / 216
页数:26
相关论文
共 50 条