Second-order approximation for adaptive regression estimators

被引:3
作者
Linton, O
Xiao, ZJ
机构
[1] Univ Illinois, Dept Econ, Champaign, IL 61820 USA
[2] Univ London London Sch Econ & Polit Sci, London WC2A 2AE, England
[3] Yale Univ, New Haven, CT 06520 USA
关键词
D O I
10.1017/S0266466601175067
中图分类号
F [经济];
学科分类号
02 ;
摘要
We derive asymptotic expansions for semiparametric adaptive regression estimators. In particular, we derive the asymptotic distribution of the second-order effect of an adaptive estimator in a linear regression whose error density is of unknown functional form. We then show how the choice of smoothing parameters influences the estimator through higher order terms. A method of bandwidth selection is defined by minimizing the second-order mean squared error. We examine both independent and time series regressors; we also extend our results to a t-statistic. Monte Carlo simulations confirm the second order theory and the usefulness of the bandwidth selection method.
引用
收藏
页码:984 / 1024
页数:41
相关论文
共 38 条
[1]   A semiparametric maximum likelihood estimator [J].
Ai, CR .
ECONOMETRICA, 1997, 65 (04) :933-963
[2]  
Akahira M., 1995, NONREGULAR STAT ESTI
[3]   NONPARAMETRIC KERNEL ESTIMATION FOR SEMIPARAMETRIC MODELS [J].
ANDREWS, DWK .
ECONOMETRIC THEORY, 1995, 11 (03) :560-596
[4]   HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE-MATRIX ESTIMATION [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (03) :817-858
[5]  
[Anonymous], ECONOMETRICS REV
[6]   ASYMPTOTICALLY EFFICIENT ADAPTIVE RANK ESTIMATES IN LOCATION MODELS [J].
BERAN, R .
ANNALS OF STATISTICS, 1974, 2 (01) :63-74
[7]   ON ADAPTIVE ESTIMATION [J].
BICKEL, PJ .
ANNALS OF STATISTICS, 1982, 10 (03) :647-671
[8]   ONE-STEP HUBER ESTIMATES IN LINEAR-MODEL [J].
BICKEL, PJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (350) :428-434
[9]   A CENTRAL-LIMIT-THEOREM FOR GENERALIZED QUADRATIC-FORMS [J].
DEJONG, P .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 75 (02) :261-277
[10]  
DEVROYE L, 1995, NONUNIFORM RANDOM VA