On MCMC sampling in self-exciting integer-valued threshold time series models

被引:27
作者
Yang, Kai [1 ]
Yu, Xinyang [1 ]
Zhang, Qingqing [1 ]
Dong, Xiaogang [1 ]
机构
[1] Changchun Univ Technol, Sch Math & Stat, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Integer-valued time series; Threshold autoregressive model; Bayesian inference; MCMC sampling; Latent variables; AUTOREGRESSIVE MODELS; BAYESIAN-ESTIMATION; PARAMETERS;
D O I
10.1016/j.csda.2021.107410
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Markov Chain Monte Carlo (MCMC) methods have been shown to be a useful tool in many branches in statistics. However, due to the complex structure of the models, this method remains an open problem for threshold integer-valued time series models. This study develops Bayesian inference for a class of self-exciting integer-valued threshold autoregressive models, which is implemented by means of a new MCMC algorithm. By introducing the latent variables series, a complete data likelihood is obtained. Based on which, the full conditional distributions are easily obtained with familiar forms. Furthermore, by maximizing the complete data likelihood, the threshold parameter is also accurately estimated. Finally, the performance of the MCMC algorithm is evaluated via some simulations and a real data example. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 51 条
[1]   Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX) [J].
Agosto, Arianna ;
Cavaliere, Giuseppe ;
Kristensen, Dennis ;
Rahbek, Anders .
JOURNAL OF EMPIRICAL FINANCE, 2016, 38 :640-663
[2]  
Al-Osh MA., 1987, J Time Ser Anal, V8, P261, DOI [DOI 10.1111/J.1467-9892.1987.TB00438.X, 10.1111/j.1467-9892.1987.tb00438.x]
[3]   AN INTEGER-VALUED PTH-ORDER AUTOREGRESSIVE STRUCTURE (INAR(P)) PROCESS [J].
ALZAID, AA ;
ALOSH, M .
JOURNAL OF APPLIED PROBABILITY, 1990, 27 (02) :314-324
[4]   Bayesian estimation of an autoregressive model using Markov chain Monte Carlo [J].
Barnett, G ;
Kohn, R ;
Sheather, S .
JOURNAL OF ECONOMETRICS, 1996, 74 (02) :237-254
[5]   Bayesian nonparametric forecasting for INAR models [J].
Bisaglia, Luisa ;
Canale, Antonio .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 100 :70-78
[6]  
Bolstad W.M., 2007, Introduction to Bayesian Statistics, Vsecond
[7]  
Box G. E. P., 1970, Time series analysis, forecasting and control
[8]  
Brannas K., 2010, APPL FINAN EC, V20, P1429, DOI DOI 10.1080/09603107.2010.498343
[9]  
Brannas K., 2001, Econometric Reviews, V20, P425, DOI [10.1081/ETC-100106998, DOI 10.1081/ETC-100106998]
[10]   Model selection, estimation and forecasting in INAR(p) models:: A likelihood-based Markov Chain approach [J].
Bu, Ruijun ;
McCabe, Brendan .
INTERNATIONAL JOURNAL OF FORECASTING, 2008, 24 (01) :151-162