The tilings {p,q} of the hyperbolic plane are combinatoric

被引:0
作者
Margenstern, M [1 ]
机构
[1] Univ Metz, UFR MIM, LITA, F-57045 Metz, France
来源
7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS: COMPUTER SCIENCE AND ENGINEERING: I | 2003年
关键词
hyperbolic geometry; hyperbolic plane; tilings; algorithms; languages;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The results of this paper are announced in the survey [10] of this session of Automata, combinatorics and geometry. It deals with an important infinite family of tilings of the hyperbolic plane: the tilings which are built by recursive reflection on the sides from a regular polygon. We show that in this case the tilings are combinatoric and that the language of the associated splitting is regular.
引用
收藏
页码:42 / 46
页数:5
相关论文
共 14 条
  • [1] [Anonymous], GEOMETRY
  • [2] [Anonymous], 1882, ACTA MATH-DJURSHOLM, DOI DOI 10.1007/BF02391835
  • [3] CARATHEODORY C, 1954, THEORY FUNCTIONS COM, V2, P177
  • [4] Greedy numeration systems and regularity
    Hollander, M
    [J]. THEORY OF COMPUTING SYSTEMS, 1998, 31 (02) : 111 - 133
  • [5] Lothaire M., 2002, Encyclopedia Math. Appl., V90
  • [6] MARGENSTERN M, IN PRESS J UNIVERSAL
  • [7] MARGENSTERN M, 2002, INT C GEOM TOP CLUJ
  • [8] MARGENSTERN M, 1998, PUBLICATIONS IUT
  • [9] MARGENSTERN M, 2003, IN PRESS SCI 2003
  • [10] Margenstern M., 2000, Journal of Universal Computer Science, V6, P1226, DOI DOI 10.3217/JUCS-006-12-1226