Process intensification of heterogeneous photocatalysis with static mixer: Enhanced mass transfer of reactive species

被引:31
作者
Li, Dong [1 ]
Xiong, Kui [1 ]
Yang, Zhuhong [1 ]
Liu, Chang [1 ]
Feng, Xin [1 ]
Lu, Xiaohua [1 ]
机构
[1] Nanjing Univ Technol, State Key Lab Mat Oriented Chem Engn, Coll Chem & Chem Engn, Nanjing 210009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; Process intensification; Static mixer; Mass transfer; Reactive species; AQUEOUS TIO2 SUSPENSIONS; TITANIUM-DIOXIDE; METAL-IONS; REDUCTION; PHENOL; DEGRADATION; CR(VI); WATER; ADSORPTION; OXIDATION;
D O I
10.1016/j.cattod.2011.04.007
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The process intensification (PI) of heterogeneous photocatalysis using the Kenics static mixer was investigated and its mechanism was proposed. Three model compounds (phenol, Cr(VI), and acid orange 7 (AO7)) with different photocatalytic reaction mechanisms were selected. The use of the Kenics static mixer increased the degradation rate of phenol from 20% to 150%, but appeared to have no effect on the photodegradation of Cr(VI) and AO7. However, with the addition of formic acid and NaF to the Cr(VI) and AO7 systems, respectively, the reaction mechanism shifted from a surface-mediated reaction to a radical-mediated reaction, and the photoreduction of Cr(VI) and photo-oxidation of AO7 using the Kenics static mixer exhibited higher reaction rates. In addition, the results of experiments with the terephthalic acid (TA) fluorescence probe indicated that the Kenics static mixer increased the yield of hydroxyl radicals. Based on the reaction mechanisms, we propose that the Kenics static mixer played a role in heterogeneous photocatalysis by creating intense mixing and increasing the interfacial mass transfer, which resulted in the enhanced mobility of reactive radicals from the catalyst surface or boundary layer to the solution. This approach intensified the heterogeneous photocatalysis process by enhancing the mass transfer of the reactive species rather than the reactant substrate, provided an alternative to the PI of heterogeneous photocatalysis, and allowed for easier engineering applications. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:322 / 327
页数:6
相关论文
共 55 条
[1]  
[Anonymous], 2005, Standard methods for examination of water and waste water, V23rd Edn
[2]   PHOTOCATALYTIC DEGRADATION OF PHENOL IN AQUEOUS TITANIUM-DIOXIDE DISPERSIONS [J].
AUGUGLIARO, V ;
PALMISANO, L ;
SCLAFANI, A ;
MINERO, C ;
PELIZZETTI, E .
TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY, 1988, 16 (02) :89-109
[3]   The combination of heterogeneous photocatalysis with chemical and physical operations: A tool for improving the photoprocess performance [J].
Augugliaro, Vincenzo ;
Litter, Marta ;
Palmisano, Leonardo ;
Soria, Javier .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2006, 7 (04) :127-144
[4]   Investigation of the interaction between a sulfonated azo dye (AO7) and a TiO2 surface [J].
Bauer, C ;
Jacques, P ;
Kalt, A .
CHEMICAL PHYSICS LETTERS, 1999, 307 (5-6) :397-406
[5]   Study of adsorption of phenol on titanium oxide (TiO2) [J].
Bekkouche, S ;
Bouhelassa, M ;
Salah, NH ;
Meghlaoui, FZ .
DESALINATION, 2004, 166 (1-3) :355-362
[6]   Photocatalytic degradation for environmental applications - a review [J].
Bhatkhande, DS ;
Pangarkar, VG ;
Beenackers, AACM .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2002, 77 (01) :102-116
[7]   Reaction engineering evaluation and utilization of static mixer technology for the synthesis of pharmaceuticals [J].
Brechtelsbauer, C ;
Ricard, F .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2001, 5 (06) :646-651
[8]   PHOTOCATALYTIC OXIDATION OF ORGANIC-ACIDS ON QUANTUM-SIZED SEMICONDUCTOR COLLOIDS [J].
CARRAWAY, ER ;
HOFFMAN, AJ ;
HOFFMANN, MR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (05) :786-793
[9]   Probing the TiO2 photocatalytic mechanisms in water purification by use of quinoline, photo-fenton generated OH. radicals and superoxide dismutase [J].
Cermenati, L ;
Pichat, P ;
Guillard, C ;
Albini, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (14) :2650-2658
[10]   Removal of toxic metal ions from wastewater by semiconductor photocatalysis [J].
Chen, D ;
Ray, AK .
CHEMICAL ENGINEERING SCIENCE, 2001, 56 (04) :1561-1570