Generic convergence of iterates for a class of nonlinear mappings in hyperbolic spaces

被引:0
作者
Reich, S [1 ]
Zaslavski, AJ [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
来源
COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS II | 2005年 / 382卷
关键词
complete metric space; generic property; hyperbolic metric space; iteration; porous set;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a bounded, closed and rho-convex subset of a hyperbolic complete metric space (X, rho). We show that the iterates of a typical (in the sense of Baire category) element of a class of continuous self-mappings of K converge uniformly on K to the unique fixed point of this typical element.
引用
收藏
页码:349 / 355
页数:7
相关论文
共 15 条
  • [1] [Anonymous], 1993, DYNAM SYSTEMS APPL
  • [2] On a generalized best approximation problem
    De Blasi, FS
    Myjak, J
    [J]. JOURNAL OF APPROXIMATION THEORY, 1998, 94 (01) : 54 - 72
  • [3] DEBLASI FS, 1991, J LOND MATH SOC, V44, P135
  • [4] DEBLASI FS, 1989, CR ACAD SCI I-MATH, V308, P51
  • [5] Goebel K., 1984, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings
  • [6] KIRK W.A., 2003, Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003),, V64, P195
  • [7] KIRK WA, 1981, NUMER FUNC ANAL OPT, V4, P371
  • [8] Kuczumow T, 2001, HANDBOOK OF METRIC FIXED POINT THEORY, P437
  • [9] NONEXPANSIVE ITERATIONS IN HYPERBOLIC SPACES
    REICH, S
    SHAFRIR, I
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (06) : 537 - 558
  • [10] Reich S, 2004, CONTEMP MATH, V364, P237