Singular limiting solutions for elliptic problem involving exponentially dominated nonlinearity and convection term

被引:2
作者
Baraket, Sami [1 ]
Abid, Imed [2 ]
Ouni, Taieb [2 ]
Trabelsi, Nihed [2 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
关键词
singular limits; Green's function; nonlinear Cauchy-data matching method; BUBBLING SOLUTIONS; EQUATION;
D O I
10.1186/1687-2770-2011-10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given O bounded open regular set of R-2 and x(1), x(2), ... , x(m) is an element of Omega, we give a sufficient condition for the problem -div (e(lambda u)del u) = rho(2)f (u) to have a positive weak solution in Omega with u = 0 on partial derivative Omega, which is singular at each xi as the parameters rho, lambda > 0 tend to 0 and where f( u) is dominated exponential nonlinearities functions.
引用
收藏
页数:17
相关论文
共 21 条
[1]  
[Anonymous], 1990, ASYMPTOTIC ANAL
[2]   Singular limit solutions for two-dimensional elliptic problems with exponentially dominated nonlinearity [J].
Baraket, S ;
Ye, D .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2001, 22 (03) :287-296
[3]  
Baraket S, 1998, CALC VAR PARTIAL DIF, V6, P1
[4]  
Baraket S, 2011, COMMUNICATIONS CONT, V13, P129
[5]   Singular limits for a 4-dimensional semilinear elliptic problem with exponential nonlinearity [J].
Baraket, Sami ;
Dammak, Makkia ;
Ouni, Taieb ;
Pacard, Frank .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (06) :875-895
[6]   Singular limits for 2-dimensional elliptic problem involving exponential nonlinearity with nonlinear gradient term [J].
Baraket, Sami ;
Ben Omrane, Ines ;
Ouni, Taieb .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2011, 18 (01) :59-78
[7]   Singular limits for the bi-Laplacian operator with exponential nonlinearity in R4 [J].
Clapp, Monica ;
Munoz, Claudio ;
Musso, Monica .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (05) :1015-1041
[8]  
Dammak M, 2008, DIFFER INTEGRAL EQU, V21, P1019
[9]   Singular limits in Liouville-type equations [J].
del Pino, M ;
Kowalczyk, M ;
Musso, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (01) :47-81
[10]   On the existence of blowing-up solutions for a mean field equation [J].
Esposito, P ;
Grossi, M ;
Pistoia, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (02) :227-257