Horseshoes in a new switching circuit via wien-bridge oscillator

被引:10
作者
Yang, XS [1 ]
Li, QD
机构
[1] Chongqing Univ Posts & Commun, Inst Nonlinear Syst, Chongqing 400065, Peoples R China
[2] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2005年 / 15卷 / 07期
关键词
horseshoe; Poincare map; chaos generator; switching circuit;
D O I
10.1142/S0218127405011631
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we revisit a switching circuit designed by the authors and present a theoretical analysis on the existence of chaos in this circuit. For the ordinary differential equations describing this circuit, we give a computer-aided proof in terms of cross-section and Poincare map, by applying a modern theory of topological horseshoes theory to the obtained Poincare map, that this map is semiconjugate to the two-shift map. This implies that the corresponding differential equations exhibit chaos.
引用
收藏
页码:2271 / 2275
页数:5
相关论文
共 8 条
[1]  
[Anonymous], IEEE T CAS
[2]   RC op-amp implementation of hysteresis chaotic oscillator [J].
Bizzarri, F ;
Storace, M .
ELECTRONICS LETTERS, 2001, 37 (04) :209-211
[3]   GENERALIZATIONS OF THE CHUA EQUATIONS [J].
BROWN, R .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (11) :878-884
[4]   Topological horseshoes [J].
Kennedy, J ;
Yorke, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (06) :2513-2530
[5]  
Suykens JAK, 1997, AEU-INT J ELECTRON C, V51, P131
[6]   GENERATION OF N-DOUBLE SCROLLS (N = 1, 2, 3, 4, . . .) [J].
SUYKENS, JAK ;
VANDEWALLE, J .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (11) :861-867
[7]  
Wiggins S, 1990, INTRO APPL NONLINEAR, DOI 10.1007/b97481
[8]   Chaos generator via Wien-bridge oscillator [J].
Yang, XS ;
Li, Q .
ELECTRONICS LETTERS, 2002, 38 (13) :623-625