Reflected solutions of backward stochastic differential equations driven by G-Brownian motion

被引:26
作者
Li, Hanwu [1 ]
Peng, Shige [1 ,2 ]
Hima, Abdoulaye Soumana [3 ,4 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
[2] Shandong Univ, Zhongtai Inst Finance, Jinan 250100, Shandong, Peoples R China
[3] Univ Rennes 1, Inst Rech Math Rennes, F-35042 Rennes, France
[4] Univ Maradi, Dept Math, BP 465, Maradi, Niger
基金
中国国家自然科学基金;
关键词
G-expectation; reflected backward stochastic differential equations; obstacle problems for fully nonlinear PDEs; THEOREM; EXPECTATIONS; CALCULUS; BSDES;
D O I
10.1007/s11425-017-9176-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion. The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected G-BSDEs, we apply a "martingale condition" instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization. We then give some applications including a generalized Feynman-Kac formula of an obstacle problem for fully nonlinear partial differential equation and option pricing of American types under volatility uncertainty.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 25 条
[1]  
[Anonymous], ARXIV10024546
[2]  
[Anonymous], 1992, Bull. Amer. Math. Soc.
[3]  
Cvitanic J, 1996, ANN PROBAB, V24, P2024
[4]   Function Spaces and Capacity Related to a Sublinear Expectation: Application to G-Brownian Motion Paths [J].
Denis, Laurent ;
Hu, Mingshang ;
Peng, Shige .
POTENTIAL ANALYSIS, 2011, 34 (02) :139-161
[5]  
El Karoui N, 1997, ANN PROBAB, V25, P702
[6]  
El Karoui N., 1997, NUMERICAL METHODS FI, P215
[7]   Reflected BSDEs and mixed game problem [J].
Hamadène, S ;
Lepeltier, JP .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 85 (02) :177-188
[8]  
Hamadene S., 2002, STOCH STOCH REPORTS, V74, P571
[9]   On Representation Theorem of G-Expectations and Paths of G-Brownian Motion [J].
Hu, Ming-shang ;
Peng, Shi-ge .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2009, 25 (03) :539-546
[10]   Comparison theorem, Feynman-Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion [J].
Hu, Mingshang ;
Ji, Shaolin ;
Peng, Shige ;
Song, Yongsheng .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (02) :1170-1195