BEST PROXIMITY POINTS THEOREMS FOR GENERALIZED MIZOGUCHI-TAKAHASHI'S CONTRACTION PAIRS

被引:0
作者
Sintunavarat, Wutiphol [1 ]
Kumam, Poom [2 ,3 ]
机构
[1] Thammasat Univ, Dept Math & Stat, Rangsit Ctr, Fac Sci & Technol, Pathum Thani 12121, Thailand
[2] King Mongkuts Univ Technol Thonburi, Dept Math, 126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] KMUTT, Theoret & Computat Sci Ctr TaCS, Fac Sci, Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
关键词
Best proximity points; multi-valued contraction; cyclic contraction; MT-function (or R-function); FIXED-POINTS; METRIC-SPACES; EXISTENCE; CONVERGENCE; MAPPINGS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept of a generalized Mizoguchi-Takahashi's contraction pairs for non-self mappings. We also study a best proximity point result for such type contraction pair in metric spaces and use this result to investigate the existence of best proximity point theorems in uniformly convex Banach spaces. We state some illustrative examples to support the generality of main result. Our results improve and extend a host of previously well-known results such as Nadler's fixed point theorem, Mizoguchi and Takahashi's fixed point theorem.
引用
收藏
页码:1345 / 1361
页数:17
相关论文
共 50 条
  • [21] Common best proximity points theorems in metric spaces
    Amini-Harandi, A.
    OPTIMIZATION LETTERS, 2014, 8 (02) : 581 - 589
  • [22] Generalized contraction mapping principle and generalized best proximity point theorems in probabilistic metric spaces
    Yongfu Su
    Wenbiao Gao
    Jen-Chih Yao
    Fixed Point Theory and Applications, 2015
  • [23] Best proximity points for asymptotic cyclic contraction mappings
    Abkar, A.
    Gabeleh, M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (18) : 7261 - 7268
  • [24] Tripartite Coincidence-Best Proximity Points and Convexity in Generalized Metric Spaces
    Norouzian, M.
    Abkar, A.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2019, 50 (04): : 999 - 1028
  • [25] Best Proximity Points for Generalized α-ψ-Proximal Contractive Type Mappings
    Jleli, Mohamed
    Karapinar, Erdal
    Samet, Bessem
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [26] Best proximity point theorems for weak contraction mapping in b-generalized pseudodistances
    Sanhan S.
    Mongkolkeha C.
    Afrika Matematika, 2018, 29 (7-8) : 1039 - 1048
  • [27] Existence and convergence theorems for best proximity points
    Haddadi, M. R.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (01)
  • [28] Cyclic pairs and common best proximity points in uniformly convex Banach spaces
    Gabeleh, Moosa
    Mary, P. Julia
    Eldred, A. Anthony Eldred
    Otafudu, Olivier Olela
    OPEN MATHEMATICS, 2017, 15 : 711 - 723
  • [29] Best proximity points for generalized proximal C-contraction mappings in metric spaces with partial orders
    Mongkolkeha, Chirasak
    Cho, Yeol Je
    Kumam, Poom
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [30] On common best proximity points for generalized α - ψ-proximal contractions
    Aydi, Hassen
    Felhi, Abdelbasset
    Karapinar, Erdal
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05): : 2658 - 2670