Rate of Convergence Towards Hartree Dynamics

被引:64
作者
Chen, Li [3 ]
Lee, Ji Oon [2 ]
Schlein, Benjamin [1 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[3] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Many body quantum dynamics; Hartree equation; Mean field limit; CLASSICAL FIELD LIMIT; SCATTERING THEORY; QUANTUM DYNAMICS;
D O I
10.1007/s10955-011-0283-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a system of N bosons interacting through a two-body potential with, possibly, Coulomb-type singularities. We show that the difference between the many-body Schrodinger evolution in the mean-field regime and the effective nonlinear Hartree dynamics is at most of the order 1/N, for any fixed time. The N-dependence of the bound is optimal.
引用
收藏
页码:872 / 903
页数:32
相关论文
共 18 条
[1]  
Bardos C., 2000, Methods Appl. Anal., V7, P275
[2]   Rate of convergence in nonlinear Hartree dynamics with factorized initial data [J].
Chen, Li ;
Lee, Ji Oon .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
[3]   Mean field dynamics of boson stars [J].
Elgart, Alexander ;
Schlein, Benjamin .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (04) :500-545
[4]  
Erdo, 2001, Adv. Theor. Math. Phys., V5, P1169
[5]  
ERDOS L, J AM MATH S IN PRESS
[6]  
ERDOS L, ANN MATH IN PRESS
[7]   Derivation of the cubic non-linear Schrodinger equation from quantum dynamics of many-body systems [J].
Erdos, Laszlo ;
Schlein, Benjamin ;
Yau, Horng-Tzer .
INVENTIONES MATHEMATICAE, 2007, 167 (03) :515-614
[8]   Quantum Dynamics with Mean Field Interactions: a New Approach [J].
Erdos, Laszlo ;
Schlein, Benjamin .
JOURNAL OF STATISTICAL PHYSICS, 2009, 134 (5-6) :859-870
[9]   CLASSICAL FIELD LIMIT OF SCATTERING THEORY FOR NONRELATIVISTIC MANY-BOSON SYSTEMS .1. [J].
GINIBRE, J ;
VELO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 66 (01) :37-76
[10]  
GINIBRE J, 1979, COMMUN MATH PHYS, V68, P45, DOI 10.1007/BF01562541