Graphene-Polymer Hybrid Nanostructure-Based Bioenergy Storage Device for Real-Time Control of Biological Motor Activity

被引:19
作者
Byun, Kyung-Eun [1 ]
Choi, Dong Shin [2 ]
Kim, Eunji [3 ]
Seo, David H. [4 ]
Yang, Heejun [4 ]
Seo, Sunae [4 ,5 ]
Hong, Seunghun [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Phys & Astron, Seoul 151742, South Korea
[2] Seoul Natl Univ, Dept Nano Sci & Engn, Seoul 151742, South Korea
[3] Seoul Natl Univ, Dept Biophys & Chem Biol, Seoul 151742, South Korea
[4] Graphene Res Ctr, Yongin 446712, Gyeonggi Do, South Korea
[5] Sejong Univ, Dept Phys, Seoul 143747, South Korea
关键词
biomotor; actin filament; myosin; graphene; conducting polymer; polypyrrole; ADENOSINE; 5-TRIPHOSPHATE; SURFACE HYDROPHOBICITY; MICROTUBULE MOTILITY; DRIVEN MOTILITY; ATP RELEASE; ACTIN; NANOSCALE; PROTEINS; MOVEMENT; SYSTEMS;
D O I
10.1021/nn202421n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a graphene-polymer hybrid nanostructure-based bioenergy storage device to turn on and off biomotor activity in real-time. In this strategy, graphene was functionalized with amine groups and utilized as a transparent electrode supporting the motility of biomotors. Conducting polymer patterns doped with adenosine triphosphate (ATP) were fabricated on the graphene and utilized for the fast release of ATP by electrical stimuli through the graphene. The controlled release of biomotor fuel, ATP, allowed us to control the actin filament transportation propelled by the biomotor in real-time. This strategy should enable the integrated nanodevices for the real-time control of biological motors, which can be a significant stepping stone toward hybrid nanomechanical systems based on motor proteins.
引用
收藏
页码:8656 / 8664
页数:9
相关论文
共 58 条
[1]   Biomolecular motors at the intersection of nanotechnology and polymer science [J].
Agarwal, Ashutosh ;
Hess, Henry .
PROGRESS IN POLYMER SCIENCE, 2010, 35 (1-2) :252-277
[2]  
AIZAWA M, 1994, BIOSENS BIOELECTRON, V9, P601, DOI 10.1016/0956-5663(94)80055-3
[3]   Mode of heavy meromyosin adsorption and motor function correlated with surface hydrophobicity and charge [J].
Albet-Torres, Nuria ;
O'Mahony, John ;
Charlton, Christy ;
Balaz, Martina ;
Lisboa, Patricia ;
Aastrup, Teodor ;
Mansson, Alf ;
Nicholls, Ian A. .
LANGMUIR, 2007, 23 (22) :11147-11156
[4]   Molecular motors on lipid bilayers and silicon dioxide: different driving forces for adsorption [J].
Albet-Torres, Nuria ;
Gunnarsson, Anders ;
Persson, Malin ;
Balaz, Martina ;
Hook, Fredrik ;
Mansson, Alf .
SOFT MATTER, 2010, 6 (14) :3211-3219
[5]   Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications [J].
An, Xiaohong ;
Simmons, Trevor John ;
Shah, Rakesh ;
Wolfe, Christopher ;
Lewis, Kim M. ;
Washington, Morris ;
Nayak, Saroj K. ;
Talapatra, Saikat ;
Kar, Swastik .
NANO LETTERS, 2010, 10 (11) :4295-4301
[6]   A Bioelectronic Platform Using a Graphene-Lipid Bilayer Interface [J].
Ang, Priscilla Kailian ;
Jaiswal, Manu ;
Lim, Candy Haley Yi Xuan ;
Wang, Yu ;
Sankaran, Jagadish ;
Li, Ang ;
Lim, Chwee Teck ;
Wohland, Thorsten ;
Oezyilmaz, Barbaros ;
Loh, Kian Ping .
ACS NANO, 2010, 4 (12) :7387-7394
[7]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[8]   Cargo pick-up from engineered loading stations by kinesin driven molecular shuttles [J].
Brunner, Christian ;
Wahnes, Christian ;
Vogel, Viola .
LAB ON A CHIP, 2007, 7 (10) :1263-1271
[9]   Guiding motor-propelled molecules with nanoscale precision through silanized bi-channel structures [J].
Bunk, R ;
Sundberg, M ;
Månsson, A ;
Nicholls, IA ;
Omling, P ;
Tågerud, S ;
Montelius, L .
NANOTECHNOLOGY, 2005, 16 (06) :710-717
[10]   Selective assembly and guiding of actomyosin using carbon nanotube network monolayer patterns [J].
Byun, Kyung-Eun ;
Kim, Min-Gon ;
Chase, P. Bryant ;
Hong, Seunghun .
LANGMUIR, 2007, 23 (19) :9535-9539