THE BILAPLACIAN WITH ROBIN BOUNDARY CONDITIONS

被引:9
作者
Buoso, Davide [1 ]
Kennedy, James B. [2 ]
机构
[1] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, I-15121 Alessandria, Italy
[2] Univ Lisbon, Grp Fis Matemat, Dept Matemat, Fac Ciencias, Edificio C6, P-1749016 Lisbon, Portugal
关键词
Bilaplacian; biharmonic operator; Robin boundary conditions; asymptotic behaviour of eigenvalues; SINGULAR PERTURBATION; RAYLEIGHS CONJECTURE; ASYMPTOTIC-BEHAVIOR; NEUMANN PROBLEM; 1ST EIGENVALUE; CLAMPED PLATE; STABILITY; STEKLOV; INEQUALITIES; ANALYTICITY;
D O I
10.1137/20M1363984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce Robin boundary conditions for biharmonic operators, which are a model for elastically supported plates and are closely related to the study of spaces of traces of Sobolev functions. We study the dependence of the operator, its eigenvalues, and eigenfunctions on the Robin parameters. We show in particular that when the parameters go to plus infinity the Robin problem converges to other biharmonic problems, and we obtain estimates on the rate of divergence when the parameters go to minus infinity. We also analyze the dependence of the operator on smooth perturbations of the domain, computing the shape derivatives of the eigenvalues and giving a characterization for critical domains under volume and perimeter constraints. We include a number of open problems arising in the context of our results.
引用
收藏
页码:36 / 78
页数:43
相关论文
共 75 条
[1]  
[Anonymous], 1976, PERTURBATION THEORY
[2]  
[Anonymous], 1979, Integral Representations of Functions and Imbedding Theorems
[3]  
[Anonymous], 2001, FUNCTION THEORY SEVE
[4]   ON THE BEHAVIOR OF CLAMPED PLATES UNDER LARGE COMPRESSION [J].
Antunes, P. R. S. ;
Buoso, D. ;
Freitas, P. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (05) :1872-1891
[5]   Bounds and extremal domains for Robin eigenvalues with negative boundary parameter [J].
Antunes, Pedro R. S. ;
Freitas, Pedro ;
Krejcirik, David .
ADVANCES IN CALCULUS OF VARIATIONS, 2017, 10 (04) :357-379
[6]  
Arendt W, 2012, J OPERAT THEOR, V67, P33
[7]   The Dirichlet-to-Neumann operator on rough domains [J].
Arendt, W. ;
ter Elst, A. F. M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (08) :2100-2124
[8]   Spectral Analysis of the Biharmonic Operator Subject to Neumann Boundary Conditions on Dumbbell Domains [J].
Arrieta, Jose M. ;
Ferraresso, Francesco ;
Lamberti, Pier Domenico .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 89 (03) :377-408
[9]   Higher order elliptic operators on variable domains. Stability results and boundary oscillations for intermediate problems [J].
Arrieta, Jose M. ;
Lamberti, Pier Domenico .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :4222-4266
[10]   ON RAYLEIGHS CONJECTURE FOR THE CLAMPED PLATE AND ITS GENERALIZATION TO 3 DIMENSIONS [J].
ASHBAUGH, MS ;
BENGURIA, RD .
DUKE MATHEMATICAL JOURNAL, 1995, 78 (01) :1-17