The low and high temperature electrochemical performance of Li3VO4/C anode material for Li-ion batteries

被引:39
作者
Liang, Zhiyong [1 ]
Zhao, Yanming [2 ,3 ]
Dong, Youzhong [3 ]
Kuang, Quan [3 ]
Lin, Xinghao [1 ]
Liu, Xudong [1 ]
Yan, Danlin [1 ]
机构
[1] S China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] S China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
[3] S China Univ Technol, Sch Phys, Guangzhou 510640, Guangdong, Peoples R China
关键词
Anode; Carbon-coated Li3VO4; Low and high temperature; Electrochemical performance; CATHODE MATERIAL; INTERCALATION;
D O I
10.1016/j.jelechem.2015.03.013
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The carbon-coated Li3VO4 (Li3VO4/C) sample was synthesized by simple solid-state reaction method using glucose as carbon source. Rietveld refinement, XPS and element analysis results show that, though it is synthesized in the presence of carbon and reducing atmosphere, both the single-phase Li3VO4/C and the valence of vanadium of +5 can be retained. The SEM and TEM images reveal that Li3VO4/C composite has uniform particles with size less than 1 mu m. Electrochemical testing results show that Li3VO4/C at high operation temperatures holds both higher specific capacity and cyclic performance than that of low temperatures. The initial discharge capacities for the Li3VO4/C electrodes at temperatures of -20, 0, 25 and 50 degrees C are 312, 600, 760 and 721 mAh g(-1) with the coulombic efficiency of 40.45%, 72.09%, 74.34% and 73.41%, respectively. Even at a high discharge/charge rate of 15 C, the capacities of the Li3VO4/C electrodes at -20, 0, 25 and 50 degrees C still can retain about 20, 120, 370 and 450 mAh g(-1), respectively. The CV results demonstrate that the higher operation temperature can decrease the voltage polarization of the electrode, thus benefit the electrochemical performance of the Li3VO4/C electrode. In addition, the EIS results indicate that larger charge-transfer resistance and smaller lithium diffusion coefficient can be obtained at low operation temperatures, which should be one of the major reasons for its poor low-temperature performance of the Li3VO4/C electrode. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
  • [21] Low temperature and atmospheric pressure fabrication of Li3VO4/rGO hybrid as high-performance anode for lithium-ion batteries
    Cao, Jia
    Zhang, Dongmei
    Sun, Panpan
    Yang, Dizi
    Ni, Shibing
    IONICS, 2021, 27 (03) : 1041 - 1048
  • [22] One-dimensional Li3VO4/carbon fiber composites for enhanced electrochemical performance as an anode material for lithium-ion batteries
    Song, Jungwook
    Maulana, Achmad Yanuar
    Jae, Woojin
    Gim, Hyunjeong
    Yun, Boram
    Futalan, Cybelle M.
    Kim, Jongsik
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 140 : 142 - 152
  • [23] Li3VO4/N-doped graphene with high capacity and excellent cycle stability as anode for lithium ion batteries
    Ni, Shibing
    Zhang, Jicheng
    Ma, Jianjun
    Yang, Xuelin
    Zhang, Lulu
    JOURNAL OF POWER SOURCES, 2015, 296 : 377 - 382
  • [24] Development and perspective of the insertion anode Li3VO4 for lithium-ion batteries
    Liao, Chaoyi
    Zhang, Qing
    Zhai, Tianyou
    Li, Huiqiao
    Zhou, Haoshen
    ENERGY STORAGE MATERIALS, 2017, 7 : 17 - 31
  • [25] Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors
    Xu, Xuena
    Niu, Feier
    Zhang, Dapeng
    Chu, Chenxiao
    Wang, Chunsheng
    Yang, Jian
    Qian, Yitai
    JOURNAL OF POWER SOURCES, 2018, 384 : 240 - 248
  • [26] Agitation drying synthesis of porous carbon supported Li3VO4 as advanced anode material for lithium-ion batteries
    Gou, Wen-Wen
    Zhou, Shuang
    Cao, Xin-Xin
    Luo, Yi-Lin
    Kong, Xiang-Zhong
    Chen, Jing
    Xie, Xue-Fang
    Pan, An-Qiang
    RARE METALS, 2021, 40 (12) : 3466 - 3476
  • [27] Review on the recent development of Li3VO4 as anode materials for lithium-ion batteries
    Zhu, Limin
    Li, Zhen
    Ding, Guochun
    Xie Lingling
    Miao, Yongxia
    Cao, Xiaoyu
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 89 : 68 - 87
  • [28] Controllable synthesis of Li3VO4/N doped C nanofibers toward high-capacity and high-rate Li-ion storage
    Xu, Zhen
    Li, Daobo
    Xu, Jie
    Lu, Junlin
    Zhang, Dongmei
    Ni, Shibing
    ELECTROCHIMICA ACTA, 2021, 384
  • [29] Three-Dimensional Porous Hierarchically Architectured Li3VO4 Anode Materials for High-Performance Lithium-Ion Batteries
    Zhou, Jiafeng
    Zhao, Bangchuan
    Song, Jiyue
    Chen, Bozhou
    Bai, Jin
    Fang, Zhitang
    Dai, Jianming
    Zhu, Xuebin
    Sun, Yuping
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (01) : 354 - 362
  • [30] In-situ-grown hierarchical mesoporous Li3VO4 on GO as a viable anode material for lithium ion batteries
    Gautam, Nishant
    Alwera, Vijay
    Muhammad, Raeesh
    Raj, Hari
    Goyal, Megha
    Sil, Anjan
    Mohanty, Paritosh
    Mandal, Tapas Kumar
    BULLETIN OF MATERIALS SCIENCE, 2020, 43 (01)