The low and high temperature electrochemical performance of Li3VO4/C anode material for Li-ion batteries

被引:39
作者
Liang, Zhiyong [1 ]
Zhao, Yanming [2 ,3 ]
Dong, Youzhong [3 ]
Kuang, Quan [3 ]
Lin, Xinghao [1 ]
Liu, Xudong [1 ]
Yan, Danlin [1 ]
机构
[1] S China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] S China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
[3] S China Univ Technol, Sch Phys, Guangzhou 510640, Guangdong, Peoples R China
关键词
Anode; Carbon-coated Li3VO4; Low and high temperature; Electrochemical performance; CATHODE MATERIAL; INTERCALATION;
D O I
10.1016/j.jelechem.2015.03.013
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The carbon-coated Li3VO4 (Li3VO4/C) sample was synthesized by simple solid-state reaction method using glucose as carbon source. Rietveld refinement, XPS and element analysis results show that, though it is synthesized in the presence of carbon and reducing atmosphere, both the single-phase Li3VO4/C and the valence of vanadium of +5 can be retained. The SEM and TEM images reveal that Li3VO4/C composite has uniform particles with size less than 1 mu m. Electrochemical testing results show that Li3VO4/C at high operation temperatures holds both higher specific capacity and cyclic performance than that of low temperatures. The initial discharge capacities for the Li3VO4/C electrodes at temperatures of -20, 0, 25 and 50 degrees C are 312, 600, 760 and 721 mAh g(-1) with the coulombic efficiency of 40.45%, 72.09%, 74.34% and 73.41%, respectively. Even at a high discharge/charge rate of 15 C, the capacities of the Li3VO4/C electrodes at -20, 0, 25 and 50 degrees C still can retain about 20, 120, 370 and 450 mAh g(-1), respectively. The CV results demonstrate that the higher operation temperature can decrease the voltage polarization of the electrode, thus benefit the electrochemical performance of the Li3VO4/C electrode. In addition, the EIS results indicate that larger charge-transfer resistance and smaller lithium diffusion coefficient can be obtained at low operation temperatures, which should be one of the major reasons for its poor low-temperature performance of the Li3VO4/C electrode. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 24 条
[1]   Rapid Synthesis of Li4Ti5O12 Microspheres as Anode Materials and Its Binder Effect for Lithium-Ion Battery [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (32) :16220-16227
[2]   Electrochemical performance and thermal stability of Li1.18Co0.15Ni0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4 [J].
Fu, Qiang ;
Du, Fei ;
Bian, Xiaofei ;
Wang, Yuhui ;
Yan, Xiao ;
Zhang, Yongquan ;
Zhu, Kai ;
Chen, Gang ;
Wang, Chunzhong ;
Wei, Yingjin .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) :7555-7562
[3]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[4]   Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material [J].
He, Chunnian ;
Wu, Shan ;
Zhao, Naiqin ;
Shi, Chunsheng ;
Liu, Enzuo ;
Li, Jiajun .
ACS NANO, 2013, 7 (05) :4459-4469
[5]   Reversible and High-Capacity Nanostructured Electrode Materials for Li-Ion Batteries [J].
Kim, Min Gyu ;
Cho, Jaephil .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (10) :1497-1514
[6]   Synthesis and lithium intercalation properties of Li3VO4 as a new anode material for secondary lithium batteries [J].
Kim, Won-Tae ;
Jeong, Yeon Uk ;
Lee, Yong Joong ;
Kim, Young Jun ;
Song, Jun Ho .
JOURNAL OF POWER SOURCES, 2013, 244 :557-560
[7]   NEW LI+ ION CONDUCTORS IN THE SYSTEM, LI4GEO4-LI3VO4 [J].
KUWANO, J ;
WEST, AR .
MATERIALS RESEARCH BULLETIN, 1980, 15 (11) :1661-1667
[8]   Li3VO4: A Promising Insertion Anode Material for Lithium-Ion Batteries [J].
Li, Huiqiao ;
Liu, Xizheng ;
Zhai, Tianyou ;
Li, De ;
Zhou, Haoshen .
ADVANCED ENERGY MATERIALS, 2013, 3 (04) :428-432
[9]   Enhancing the performances of Li-ion batteries by carbon-coating: present and future [J].
Li, Huiqiao ;
Zhou, Haoshen .
CHEMICAL COMMUNICATIONS, 2012, 48 (09) :1201-1217
[10]   New understanding of Li3VO4/C as potential anode for Li-ion batteries: Preparation, structure characterization and lithium insertion mechanism [J].
Liang, Zhiyong ;
Lin, Zhiping ;
Zhao, Yanming ;
Dong, Youzhong ;
Kuang, Quan ;
Lin, Xinghao ;
Liu, Xudong ;
Yan, Danlin .
JOURNAL OF POWER SOURCES, 2015, 274 :345-354