Selenium@Hollow mesoporous carbon composites for high-rate and long-cycling lithium/sodium-ion batteries

被引:63
作者
Xue, Pan [1 ,4 ]
Zhai, Yanjun [2 ]
Wang, Nana [3 ]
Zhang, Yaohui [4 ]
Lu, Zhenxiao [4 ]
Liu, Yuanlin [4 ]
Bai, Zhongchao [1 ,4 ]
Han, Baokun [1 ]
Zou, Guifu [1 ,5 ]
Dou, Shixue [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Mech & Elect Engn, Qingdao 266590, Shandong, Peoples R China
[2] LiaoCheng Univ, Coll Mat Sci & Engn, Sch Chem & Chem Engn, Shandong Prov Key Lab Chem Energy Storage & Novel, Liaocheng 252000, Shandong, Peoples R China
[3] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, Innovat Campus, North Wollongong, NSW 2500, Australia
[4] Taiyuan Univ Technol, New Carbon Mat Inst, Taiyuan 030024, Peoples R China
[5] Soochow Univ, Coll Energy, Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Hollow mesoporous sphere structure; Selenium anode; Lithium-ion batteries; Sodium-ion batteries; Full-cell; HIERARCHICAL POROUS CARBON; SODIUM-ION; LI-SE; CATHODE MATERIAL; ENERGY-STORAGE; PERFORMANCE; ELECTROCHEMISTRY; CHALLENGES; ELECTRODES; VOLTAGE;
D O I
10.1016/j.cej.2019.123676
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Selenium (Se) is a prospective candidate of electrode material for high-energy batteries. However, the low Se loading, volumetric expansion and polyselenide shuffling between cathode and anode are major factors to limit further development. To overcome above issues, the hollow carbon structure with interconnected mesopores is used to confine Se composite via a facile annealing treatment route. The Se/HMCS electrode exhibits excellent performance, including a long cycle life (710 mA h g(-1) at the 800th cycle at 0.5 A g(-1) for LIBs and 291 mA h g(-1) at the 1500th cycle at 0.5 A g(-1) for SIBs). When coupled with LiCoO2 and Na3V2(PO4)(3)/C in full cells, this electrode also exhibits superior rate capability (181 Wh kg(tot)(al)(-1) at 20 W kg(-1) for LIBs and 130 Wh kg(tot)(al)(-1) at 52 W kg(-1) for SIBs). The excellent electrochemical performance is attributed to the unique hollow structure of HMCS and a large amount of Se encapsulated within mesoporous, which not only promote electronic/ionic transport but also provide additional buffer space to adjust the volumetric expansion of Se and polyselenide during long cycling. This facile and novelty strategy could be easily extended to other materials with low electronic conductivity for advanced energy storage systems.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Porous carbon spheres as anode materials for sodium-ion batteries with high capacity and long cycling life [J].
Tang, Hongmei ;
Wang, Miao ;
Lu, Ting ;
Pan, Likun .
CERAMICS INTERNATIONAL, 2017, 43 (05) :4475-4482
[22]   A universal strategy to prepare porous graphene films: binder-free anodes for high-rate lithium-ion and sodium-ion batteries [J].
Zhang, Xiaoting ;
Zhou, Jisheng ;
Liu, Chengcheng ;
Chen, Xiaohong ;
Song, Huaihe .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (22) :8837-8843
[23]   Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries [J].
Huang, Jimei ;
Meng, Ruijin ;
Zu, Lianhai ;
Wang, Zhijun ;
Feng, Nan ;
Yang, Ziyi ;
Yu, Yan ;
Yang, Jinhu .
NANO ENERGY, 2018, 46 :20-28
[24]   A Hydrostable Cathode Material Based on the Layered P2@P3 Composite that Shows Redox Behavior for Copper in High-Rate and Long-Cycling Sodium-Ion Batteries [J].
Yan, Zichao ;
Tang, Liang ;
Huang, Yangyang ;
Hua, Weibo ;
Wang, Yong ;
Liu, Rong ;
Gu, Qinfen ;
Indris, Sylvio ;
Chou, Shu-Lei ;
Huang, Yunhui ;
Wu, Minghong ;
Dou, Shi-Xue .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (05) :1412-1416
[25]   Mesoporous Graphitic Carbon-Encapsulated Fe2O3 Nanocomposite as High-Rate Anode Material for Sodium-Ion Batteries [J].
Hou, Tianyi ;
Sun, Xiaohong ;
Xie, Dongli ;
Wang, Mingjing ;
Fan, Anran ;
Chen, Yuanyuan ;
Cai, Shu ;
Zheng, Chunming ;
Hu, Wenbin .
CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (55) :14786-14793
[26]   Rational structure design of metal-based cathode for high-rate and long-cycling sodium nickel chloride batteries [J].
Xiong, Guowei ;
Wu, Xiangwei ;
Wen, Zhaoyin .
COMPOSITES PART B-ENGINEERING, 2024, 283
[27]   Hollow carbon nanocages toward long cycle lifespan lithium/sodium-ion half/full batteries [J].
Zhang, Zheng ;
Huang, Ying ;
Li, Xiang ;
Zhang, Shuai ;
Jia, Quanxing ;
Li, Tiehu .
CHEMICAL ENGINEERING JOURNAL, 2021, 421
[28]   Microsized Gray Tin as a High-Rate and Long-Life Anode Material for Advanced Sodium-Ion Batteries [J].
Zhu, Yansong ;
Yao, Qian ;
Shao, Ruiwen ;
Wang, Cheng ;
Yan, Weishan ;
Ma, Jizhen ;
Liu, Duo ;
Yang, Jian ;
Qian, Yitai .
NANO LETTERS, 2022, :7976-7983
[29]   Bismuth Nanoparticle@Carbon Composite Anodes for Ultralong Cycle Life and High-Rate Sodium-Ion Batteries [J].
Xiong, Peixun ;
Bai, Panxing ;
Li, Ang ;
Li, Benfang ;
Cheng, Mingren ;
Chen, Yiping ;
Huang, Shuping ;
Iang, Qiang ;
Bu, Xian-He ;
Xu, Yunhua .
ADVANCED MATERIALS, 2019, 31 (48)
[30]   High-rate formation protocol enables a high ionic conductivity SEI for sodium-ion batteries [J].
Sun, Ju ;
Gunathilaka, Isuru E. ;
O'Dell, Luke A. ;
Howlett, Patrick C. ;
Forsyth, Maria .
JOURNAL OF POWER SOURCES, 2023, 554