Materials informatics approach for design of Si/Ge layered nanostructures with low thermal conductivity

被引:0
作者
Takahashi, Norihiko [1 ]
Liu, Yu [1 ]
Kaneta, Chioko [1 ]
机构
[1] Fujitsu Labs Ltd, 10-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430197, Japan
关键词
thermal conductivity; materials informatics; Silicon; Germanium; phonon; layered structure; descriptor; MOLECULAR-DYNAMICS; SIMULATION; SI; GE;
D O I
10.35848/1347-4065/ab8700
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report an efficient method based on the materials informatics approach to predict low thermal conductivity structures using a descriptor obtained by phonon mode calculations. For a small number of Si/Ge layered structures, we perform normal mode analysis to calculate the participation ratio for each phonon mode and calculations of thermal conductivity in the stacking direction using the perturbed molecular dynamics (MD) method. The descriptor for the thermal conductivity is defined using the participation ratios averaged in the acoustic phonon frequency ranges with their lower and upper limits independently optimized. By employing the descriptor and genetic algorithm, low thermal conductivity structures are recommended among a huge number of possible structures. The recommended structures are confirmed to have very small thermal conductivities from the results of the perturbed MD calculations. By employing the method, we can design Si/Ge layered structures with low thermal conductivity at very low computational cost.
引用
收藏
页数:6
相关论文
共 32 条
[1]  
[Anonymous], 1995, Handbook of Thermoelectrics
[2]   Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys [J].
Basu, Ranita ;
Bhattacharya, Shovit ;
Bhatt, Ranu ;
Roy, Mainak ;
Ahmad, Sajid ;
Singh, Ajay ;
Navaneethan, M. ;
Hayakawa, Y. ;
Aswal, D. K. ;
Gupta, S. K. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (19) :6922-6930
[3]   Enhanced thermoelectric figure-of-merit in spark plasma sintered nanostructured n-type SiGe alloys [J].
Bathula, Sivaiah ;
Jayasimhadri, M. ;
Singh, Nidhi ;
Srivastava, A. K. ;
Pulikkotil, Jiji ;
Dhar, Ajay ;
Budhani, R. C. .
APPLIED PHYSICS LETTERS, 2012, 101 (21)
[4]   Vibrations and thermal transport in nanocrystalline silicon [J].
Bodapati, Arun ;
Schelling, Patrick K. ;
Phillpot, Simon R. ;
Keblinski, Pawel .
PHYSICAL REVIEW B, 2006, 74 (24)
[5]   Thermal conductivity of isotopically enriched Si [J].
Capinski, WS ;
Maris, HJ ;
Bauser, E ;
Silier, I ;
AsenPalmer, M ;
Ruf, T ;
Cardona, M ;
Gmelin, E .
APPLIED PHYSICS LETTERS, 1997, 71 (15) :2109-2111
[6]   Heat transport in silicon from first-principles calculations [J].
Esfarjani, Keivan ;
Chen, Gang ;
Stokes, Harold T. .
PHYSICAL REVIEW B, 2011, 84 (08)
[7]  
Fujitsu, 2014, SCIGRESS
[8]   THERMAL CONDUCTIVITY OF SILICON + GERMANIUM FROM 3 DEGREES K TO MELTING POINT [J].
GLASSBRENNER, CJ ;
SLACK, GA .
PHYSICAL REVIEW, 1964, 134 (4A) :1058-+
[9]   ANALYSIS OF LATTICE THERMAL CONDUCTIVITY [J].
HOLLAND, MG .
PHYSICAL REVIEW, 1963, 132 (06) :2461-&
[10]   Comparison of molecular dynamics methods and interatomic potentials for calculating the thermal conductivity of silicon [J].
Howell, P. C. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (22)