Positive solutions for nonlinear semipositone nth-order boundary value problems

被引:1
作者
Xie, Dapeng [1 ,2 ]
Bai, Chuanzhi [2 ]
Liu, Yang [1 ,2 ]
Wang, Chunli [1 ,2 ]
机构
[1] Yanbian Univ, Dept Math, Yanji 133002, Jilin, Peoples R China
[2] Huaiyin Teachers Coll, Dept Math, Huaian 223300, Jiangsu, Peoples R China
关键词
boundary value problem; positive solution; semipositone; fixed point;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of positive solutions for a class of nonlinear semi-positone nth-order boundary value problems. Our approach relies on the Krasnosel'skii fixed point theorem. The result of this paper complement and extend previously known result.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 10 条
[1]  
Agarwal R.P., 1986, BOUND VALUE PROBL
[2]   Semipositone higher-order differential equations [J].
Agarwal, RP ;
Grace, SR ;
O'Regan, D .
APPLIED MATHEMATICS LETTERS, 2004, 17 (02) :201-207
[3]   Multiplicity results for singular conjugate, focal, and (n, p) problems [J].
Agarwal, RP ;
O'Regan, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 170 (01) :142-156
[4]  
BAI C, 2006, ELECT J DIFFERENTIAL, P1
[5]   Positive solutions and eigenvalue ntervals of nonlocal boundary value problems with delays [J].
Bai, Dingyong ;
Xu, Yuantong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) :1152-1166
[6]   Positive solutions of a nonlinear nth order boundary value problem with nonlocal conditions [J].
Eloe, PW ;
Ahmad, B .
APPLIED MATHEMATICS LETTERS, 2005, 18 (05) :521-527
[7]   Singular nonlinear (k,n-k) conjugate boundary value problems [J].
Eloe, PW ;
Henderson, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 133 (01) :136-151
[8]  
GUO D, 1988, NONL PROBL ABSTR CON
[9]   Positive solutions for nonlinear nth-order singular nonlocal boundary value problems [J].
Hao, Xin'an ;
Liu, Lishan ;
Wu, Yonghong .
BOUNDARY VALUE PROBLEMS, 2007, 2007 (1)
[10]  
Yang D., 2007, ELECT J DIFFERENTIAL, V16, P1