smartR: An r package for spatial modelling of fisheries and scenario simulation of management strategies

被引:11
|
作者
D'Andrea, Lorenzo [1 ]
Parisi, Antonio [2 ]
Fiorentino, Fabio [3 ]
Garofalo, Germana [3 ]
Gristina, Michele [4 ]
Cataudella, Stefano [1 ]
Russo, Tommaso [1 ]
机构
[1] Univ Roma Tor Vergata, LESA, Rome, Italy
[2] Univ Roma Tor Vergata, DEF, Rome, Italy
[3] CNR, IRBIM, Mazara Del Vallo, TP, Italy
[4] CNR, Ist Impatti Antrop & Sostenibilita Ambiente Marin, Palermo, PA, Italy
来源
METHODS IN ECOLOGY AND EVOLUTION | 2020年 / 11卷 / 07期
关键词
bio-economic evaluation; decision support; fisheries management; scenario simulation; spatial modelling; management strategy evaluation; species distribution; MEDITERRANEAN FISHERIES; FISH;
D O I
10.1111/2041-210X.13394
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Overfishing or exploitation patterns with high juvenile mortalities often negatively impact demersal fish stocks. Meanwhile, the increased availability and diffusion of georeferenced information is propelling a revolution of marine spatial planning. A spatial-explicit approach to the management of fishing effort should protect the Essential Fish Habitats and minimize the impact of trawlers on areas where juveniles of commercial species concentrate. The smartR package is a data-driven model that implements the Spatially explicit bio-economic Model for Assessing and managing demeRsal Trawl fisheries to edit and format the raw data; construct and maintain coherent datasets; to numerically and visually inspect the generated metadata; to simulate management scenarios and forecast the possible effects in terms of resources status and economic performances of the fleets. Explicit inclusion of the spatial dimension is essential to improve the understanding of the fishery system, and to enhance the ability of management plans to improve stocks statuses.
引用
收藏
页码:859 / 868
页数:10
相关论文
共 5 条
  • [1] FLBEIA: A simulation model to conduct Bio-Economic evaluation of fisheries management strategies
    Garcia, Dorleta
    Sanchez, Sonia
    Prellezo, Raul
    Urtizberea, Agurtzane
    Andres, Marga
    SOFTWAREX, 2017, 6 : 141 - 147
  • [2] Evaluating deepwater fisheries management strategies using a mixed-fisheries and spatially explicit modelling framework
    Marchal, Paul
    Vermard, Youen
    ICES JOURNAL OF MARINE SCIENCE, 2013, 70 (04) : 768 - 781
  • [3] inlabru: an R package for Bayesian spatial modelling from ecological survey data
    Bachl, Fabian E.
    Lindgren, Finn
    Borchers, David L.
    Illian, Janine B.
    METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (06): : 760 - 766
  • [4] "Crash landing" obligation for Mediterranean mixed fisheries: Evaluation of management strategies using bioeconomic modelling in the Aegean Sea
    Christou, Maria
    Maynou, Francesc
    Tserpes, George
    Stergiou, Konstantinos, I
    Maravelias, Christos D.
    SCIENTIA MARINA, 2019, 83 (02) : 143 - 154
  • [5] Using Opportunistic Datasets to Infer Spatial Management Strategies of Local Fisheries in the US Caribbean Region
    Tzadik, Orian E.
    Arnold, William S.
    Brooks, Mallory
    Cruz-Motta, Juan Jose
    Garcia-Moliner, Graciela
    del Mar Lopez, Maria
    Rankin, Tauna L.
    Sabine, Alexis M.
    Stephenson, Sarah P.
    FISHERIES, 2021, 46 (04) : 156 - 169