On rigid and infinitesimal rigid displacements in three-dimensional elasticity

被引:15
|
作者
Ciarlet, PG
Mardare, C
机构
[1] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Univ Paris 06, Lab Jacques Louis Lions, F-75005 Paris, France
来源
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES | 2003年 / 13卷 / 11期
关键词
submanifold; rigidity theorem; infinitesimal rigid displacement lemma; three-dimensional; linearized elasticity;
D O I
10.1142/S0218202503003045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be an open connected subset of R-3 and let Theta be an immersion from Omega into R-3. It is first established that the set formed by all rigid displacements, i.e. that preserve the metric, of the open set Theta(Omega) is a submanifold of dimension 6 and of class C-infinity of the space H-1(Omega). It is then shown that the vector space formed by all the infinitesimal rigid displacements of the same set Theta(Omega) is nothing but the tangent space at the origin to this submanifold. In this fashion, the familiar "infinitesimal rigid displacement lemma" of three-dimensional linearized elasticity is put in its proper perspective.
引用
收藏
页码:1589 / 1598
页数:10
相关论文
共 50 条
  • [1] On rigid displacements and their relation to the infinitesimal rigid displacement lemma in three-dimensional elasticity
    Ciarlet, PG
    Mardare, C
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (10) : 873 - 878
  • [2] On rigid and infinitesimal rigid displacements in shell theory
    Ciarlet, PG
    Mardare, C
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (01): : 1 - 15
  • [4] On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory
    Ciarlet, PG
    Mardare, C
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (11) : 959 - 966
  • [5] Three-dimensional analysis of the posttreatment displacements of mandibular anterior teeth with rigid and flexible lingual retainers
    Rahimi, Hajir
    Albright, David A.
    Hughes, Jay A.
    Dutra, Vinicius
    Turkkahraman, Hakan
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2022, 161 (05) : 628 - 637
  • [6] Rigid impacts of three-dimensional rocking structures
    Varkonyi, Peter L.
    Kocsis, Marton
    Ther, Tamas
    NONLINEAR DYNAMICS, 2022, 107 (03) : 1839 - 1858
  • [7] Rigid impacts of three-dimensional rocking structures
    Péter L. Várkonyi
    Márton Kocsis
    Tamás Ther
    Nonlinear Dynamics, 2022, 107 : 1839 - 1858
  • [8] INTEGRAL EQUATIONS OF THREE-DIMENSIONAL PROBLEMS OF THE THEORY OF ELASTICITY FOR POLYHEDRONS WITH THIN RIGID INCLUSIONS.
    Silovanyuk, V.P.
    Soviet materials science, 1985, 21 (01): : 70 - 74
  • [9] The tennis racket effect in a three-dimensional rigid body
    Van Damme, Leo
    Mardesic, Pavao
    Sugny, Dominique
    PHYSICA D-NONLINEAR PHENOMENA, 2017, 338 : 17 - 25
  • [10] Rigid isotopy classification of real three-dimensional cubics
    Krasnov, V. A.
    IZVESTIYA MATHEMATICS, 2006, 70 (04) : 731 - 768