Protein shape sampled by ion mobility mass spectrometry consistently improves protein structure prediction

被引:27
作者
Turzo, S. M. Bargeen Alam [1 ,2 ]
Seffernick, Justin T. [1 ,2 ]
Rolland, Amber D. [3 ,4 ]
Donor, Micah T. [3 ,4 ]
Heinze, Sten [1 ,2 ]
Prell, James S. [3 ,4 ]
Wysocki, Vicki H. [1 ,2 ]
Lindert, Steffen [1 ,2 ]
机构
[1] Ohio State Univ, Dept Chem & Biochem, Columbus, OH 43210 USA
[2] Ohio State Univ, Resource Nat Mass Spectrometry Guided Struct Biol, Columbus, OH 43210 USA
[3] Univ Oregon, Dept Chem & Biochem, Eugene, OR 97403 USA
[4] Univ Oregon, Mat Sci Inst, Eugene, OR 97403 USA
关键词
SURFACE-INDUCED DISSOCIATION; COLLISION CROSS-SECTIONS; HYDROGEN-DEUTERIUM EXCHANGE; GAS-PHASE; COMPLEX-IONS; COMPUTATIONAL METHODS; DESIGN; MODEL; RESTRAINTS; COMPACTION;
D O I
10.1038/s41467-022-32075-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ion mobility (IM) mass spectrometry provides structural information about protein shape and size in the form of an orientationally-averaged collision cross-section (CCSIM). While IM data have been used with various computational methods, they have not yet been utilized to predict monomeric protein structure from sequence. Here, we show that IM data can significantly improve protein structure determination using the modelling suite Rosetta. We develop the Rosetta Projection Approximation using Rough Circular Shapes (PARCS) algorithm that allows for fast and accurate prediction of CCSIM from structure. Following successful testing of the PARCS algorithm, we use an integrative modelling approach to utilize IM data for protein structure prediction. Additionally, we propose a confidence metric that identifies near native models in the absence of a known structure. The results of this study demonstrate the ability of IM data to consistently improve protein structure prediction. Collision cross sections (CCS) from ion mobility mass spectrometry provide information about protein shape and size. Here, the authors develop an algorithm to predict CCS and integrate experimental ion mobility data into Rosetta-based molecular modelling to predict protein structures from sequence.
引用
收藏
页数:15
相关论文
共 104 条
[1]   Integrating diverse data for structure determination of macromolecular assemblies [J].
Alber, Frank ;
Foerster, Friedrich ;
Korkin, Dmitry ;
Topf, Maya ;
Sali, Andrej .
ANNUAL REVIEW OF BIOCHEMISTRY, 2008, 77 :443-477
[2]   The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design [J].
Alford, Rebecca F. ;
Leaver-Fay, Andrew ;
Jeliazkov, Jeliazko R. ;
O'Meara, Matthew J. ;
DiMaio, Frank P. ;
Park, Hahnbeom ;
Shapovalov, Maxim V. ;
Renfrew, P. Douglas ;
Mulligan, Vikram K. ;
Kappel, Kalli ;
Labonte, Jason W. ;
Pacella, Michael S. ;
Bonneau, Richard ;
Bradley, Philip ;
Dunbrack, Roland L., Jr. ;
Das, Rhiju ;
Baker, David ;
Kuhlman, Brian ;
Kortemme, Tanja ;
Gray, Jeffrey J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (06) :3031-3048
[3]   Ion mobility mass spectrometry of peptide, protein, and protein complex ions using a radio-frequency confining drift cell [J].
Allen, Samuel J. ;
Giles, Kevin ;
Gilbert, Tony ;
Bush, Matthew F. .
ANALYST, 2016, 141 (03) :884-891
[4]   Computational Strategies and Challenges for Using Native Ion Mobility Mass Spectrometry in Biophysics and Structural Biology [J].
Allison, Timothy M. ;
Barran, Perdita ;
Cianferani, Sarah ;
Degiacomi, Matteo T. ;
Gabelica, Valeprimerie ;
Grandori, Rita ;
Marklund, Erik G. ;
Menneteau, Thomas ;
Migas, Lukasz G. ;
Politis, Argyris ;
Sharon, Michal ;
Sobott, Frank ;
Thalassinos, Konstantinos ;
Benesch, Justin L. P. .
ANALYTICAL CHEMISTRY, 2020, 92 (16) :10872-10880
[5]   Utility of Covalent Labeling Mass Spectrometry Data in Protein Structure Prediction with Rosetta [J].
Aprahamian, Melanie L. ;
Lindert, Steffen .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (05) :3410-3424
[6]   Rosetta Protein Structure Prediction from Hydroxyl Radical Protein Footprinting Mass Spectrometry Data [J].
Aprahamian, Melanie L. ;
Chea, Emily E. ;
Jones, Lisa M. ;
Lindert, Steffen .
ANALYTICAL CHEMISTRY, 2018, 90 (12) :7721-7729
[7]   Protein Structural Analysis via Mass Spectrometry-Based Proteomics [J].
Artigues, Antonio ;
Nadeau, Owen W. ;
Rimmer, Mary Ashley ;
Villar, Maria T. ;
Du, Xiuxia ;
Fenton, Aron W. ;
Carlson, Gerald M. .
MODERN PROTEOMICS - SAMPLE PREPARATION, ANALYSIS AND PRACTICAL APPLICATIONS, 2016, 919 :397-431
[8]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[9]   Protein Ions Generated by Native Electrospray Ionization: Comparison of Gas Phase, Solution, and Crystal Structures [J].
Bakhtiari, Maryam ;
Konermann, Lars .
JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (08) :1784-1796
[10]   Protein complexes in the gas phase: Technology for structural genomics and proteomics [J].
Benesch, Justin L. P. ;
Ruotolo, Brandon T. ;
Simmons, Douglas A. ;
Robinson, Carol V. .
CHEMICAL REVIEWS, 2007, 107 (08) :3544-3567