Enhancing CO2-Valorization Using Clostridium autoethanogenum for Sustainable Fuel and Chemicals Production

被引:98
作者
Heffernan, James K. [1 ]
Valgepea, Kaspar [1 ,2 ]
Lemgruber, Renato de Souza Pinto [1 ]
Casini, Isabella [3 ]
Plan, Manuel [4 ]
Tappel, Ryan [5 ]
Simpson, Sean D. [5 ]
Kopke, Michael [5 ]
Nielsen, Lars K. [1 ,4 ]
Marcellin, Esteban [1 ,4 ]
机构
[1] Univ Queensland, Austral Inst Bioengn & Nanotechnol, St Lucia, Qld, Australia
[2] Univ Tartu, Inst Technol, ERA Chair Gas Fermentat Technol, Tartu, Estonia
[3] Univ Tubingen, Ctr Appl Geosci, Tubingen, Germany
[4] Univ Queensland, Queensland Node Metabol Australia, St Lucia, Qld, Australia
[5] LanzaTech Inc, Skokie, IL USA
关键词
gas fermentation; Clostridium autoethanogenum; carbon dioxide; valorization; carbon recycling; fuel and chemical platforms; CARBON-DIOXIDE; ACETOBACTERIUM-WOODII; ETHANOL-PRODUCTION; ENERGY-CONSERVATION; CONTINUOUS-CULTURE; GAS FERMENTATION; RENEWABLE POWER; CO2; THERMODYNAMICS; GROWTH;
D O I
10.3389/fbioe.2020.00204
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Acetogenic bacteria can convert waste gases into fuels and chemicals. Design of bioprocesses for waste carbon valorization requires quantification of steady-state carbon flows. Here, steady-state quantification of autotrophic chemostats containing Clostridium autoethanogenum grown on CO2 and H-2 revealed that captured carbon (460 +/- 80 mmol/gDCW/day) had a significant distribution to ethanol (54 +/- 3 C-mol% with a 2.4 +/- 0.3 g/L titer). We were impressed with this initial result, but also observed limitations to biomass concentration and growth rate. Metabolic modeling predicted culture performance and indicated significant metabolic adjustments when compared to fermentation with CO as the carbon source. Moreover, modeling highlighted flux to pyruvate, and subsequently reduced ferredoxin, as a target for improving CO2 and H-2 fermentation. Supplementation with a small amount of CO enabled co-utilization with CO2, and enhanced CO2 fermentation performance significantly, while maintaining an industrially relevant product profile. Additionally, the highest specific flux through the Wood-Ljungdahl pathway was observed during co-utilization of CO2 and CO. Furthermore, the addition of CO led to superior CO2-valorizing characteristics (9.7 +/- 0.4 g/L ethanol with a 66 +/- 2 C-mol% distribution, and 540 +/- 20 mmol CO2/gDCW/day). Similar industrial processes are commercial or currently being scaled up, indicating CO-supplemented CO2 and H-2 fermentation has high potential for sustainable fuel and chemical production. This work also provides a reference dataset to advance our understanding of CO2 gas fermentation, which can contribute to mitigating climate change.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Advanced continuous cultivation methods for systems microbiology [J].
Adamberg, Kaarel ;
Valgepea, Kaspar ;
Vilu, Raivo .
MICROBIOLOGY-SGM, 2015, 161 :1707-1719
[2]   Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment [J].
Artz, Jens ;
Mueller, Thomas E. ;
Thenert, Katharina ;
Kleinekorte, Johanna ;
Meys, Raoul ;
Sternberg, Andre ;
Bardow, Andre ;
Leitner, Walter .
CHEMICAL REVIEWS, 2018, 118 (02) :434-504
[3]   Bacterial Anaerobic Synthesis Gas (Syngas) and CO2+H2 Fermentation [J].
Bengelsdorf, Frank R. ;
Beck, Matthias H. ;
Erz, Catarina ;
Hoffmeister, Sabrina ;
Karl, Michael M. ;
Riegler, Peter ;
Wirth, Steffen ;
Poehlein, Anja ;
Weuster-Botz, Dirk ;
Duerre, Peter .
ADVANCES IN APPLIED MICROBIOLOGY, VOL 103, 2018, 103 :143-221
[4]   EFFECT OF MOLECULAR-HYDROGEN AND CARBON-DIOXIDE ON CHEMO-ORGANOTROPHIC GROWTH OF ACETOBACTERIUM-WOODII AND CLOSTRIDIUM-ACETICUM [J].
BRAUN, K ;
GOTTSCHALK, G .
ARCHIVES OF MICROBIOLOGY, 1981, 128 (03) :294-298
[5]   Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space [J].
Charubin, Kamil ;
Papoutsakis, Eleftherios Terry .
METABOLIC ENGINEERING, 2019, 52 :9-19
[6]   Harnessing the power of microbial autotrophy [J].
Claassens, Nico J. ;
Sousa, Diana Z. ;
dos Santos, Vitor A. P. Martins ;
de Vos, Willem M. ;
van der Oost, John .
NATURE REVIEWS MICROBIOLOGY, 2016, 14 (11) :692-706
[7]   Thermodynamics-based design of microbial cell factories for anaerobic product formation [J].
Cueto-Rojas, Hugo F. ;
van Maris, A. J. A. ;
Wahl, S. Aljoscha ;
Heijnen, J. J. .
TRENDS IN BIOTECHNOLOGY, 2015, 33 (09) :534-546
[8]   A thermodynamic theory of microbial growth [J].
Desmond-Le Quemener, Elie ;
Bouchez, Theodore .
ISME JOURNAL, 2014, 8 (08) :1747-1751
[9]   The future of solar fuels: when could they become competitive? [J].
Detz, R. J. ;
Reek, J. N. H. ;
van der Zwaan, B. C. C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (07) :1653-1669
[10]   Old acetogens, new light [J].
Drake, Harold L. ;
Goessner, Anita S. ;
Daniel, Steven L. .
INCREDIBLE ANAEROBES: FROM PHYSIOLOGY TO GENOMICS TO FUELS, 2008, 1125 :100-128