Meta-Analysis of in vitro-Differentiated Macrophages Identifies Transcriptomic Signatures That Classify Disease Macrophages in vivo

被引:30
作者
Chen, Hung-Jen [1 ]
Li Yim, Andrew Y. F. [2 ,3 ]
Griffith, Guillermo R. [1 ]
de Jonge, Wouter J. [4 ]
Mannens, Marcel M. A. M. [2 ]
Ferrero, Enrico [5 ,7 ]
Henneman, Peter [2 ]
de Winther, Menno P. J. [1 ,6 ]
机构
[1] Univ Amsterdam, Dept Med Biochem, Expt Vasc Biol, Amsterdam Univ,Med Ctr, Amsterdam, Netherlands
[2] Univ Amsterdam, Genome Diagnost Lab, Dept Clin Genet, Amsterdam Univ,Med Ctr, Amsterdam, Netherlands
[3] GlaxoSmithKline, Epigenet Discovery Performance Unit, Stevenage, Herts, England
[4] Univ Amsterdam, Tytgat Inst Liver & Intestinal Res, Amsterdam Univ, Med Ctr, Amsterdam, Netherlands
[5] GlaxoSmithKline, Target Sci, Computat Biol, Stevenage, Herts, England
[6] Ludwig Maximilians Univ Munchen, Inst Cardiovasc Prevent IPEK, Munich, Germany
[7] Novartis, Autoimmun Transplantat & Inflammat Bioinformat, Inst BioMed Res, Basel, Switzerland
基金
欧盟地平线“2020”;
关键词
meta-analysis; elastic net classification; macrophages; alveolar macrophages (AMs); synovial macrophages (SMs); adipose tissue macrophages (ATMs); macrophage identifier (macIDR); ADIPOSE-TISSUE MACROPHAGES; SCAVENGER RECEPTOR MARCO; GENE-EXPRESSION; INSULIN-RESISTANCE; INTERFERON-GAMMA; POLARIZATION; ACTIVATION; MICROARRAY; INFLAMMATION; SEROTONIN;
D O I
10.3389/fimmu.2019.02887
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Macrophages are heterogeneous leukocytes regulated in a tissue- and disease-specific context. While in vitro macrophage models have been used to study diseases empirically, a systematic analysis of the transcriptome thereof is lacking. Here, we acquired gene expression data from eight commonly-used in vitro macrophage models to perform a meta-analysis. Specifically, we obtained gene expression data from unstimulated macrophages (M0) and macrophages stimulated with lipopolysaccharides (LPS) for 2-4 h (M-LPSearly), LPS for 24 h (M-LPSlate), LPS and interferon-gamma (M-LPS+IFN gamma), IFN gamma (M-IFN gamma), interleukin-4 (M-IL4), interleukin-10 (M-IL10), and dexamethasone (M-dex). Our meta-analysis identified consistently differentially expressed genes that have been implicated in inflammatory and metabolic processes. In addition, we built macIDR, a robust classifier capable of distinguishing macrophage activation states with high accuracy (>0.95). We classified in vivo macrophages with macIDR to define their tissue- and disease-specific characteristics. We demonstrate that alveolar macrophages display high resemblance to IL10 activation, but show a drop in IFN gamma signature in chronic obstructive pulmonary disease patients. Adipose tissue-derived macrophages were classified as unstimulated macrophages, but acquired LPS-activation features in diabetic-obese patients. Rheumatoid arthritis synovial macrophages exhibit characteristics of IL10- or IFN gamma-stimulation. Altogether, we defined consensus transcriptional profiles for the eight in vitro macrophage activation states, built a classification model, and demonstrated the utility of the latter for in vivo macrophages.
引用
收藏
页数:15
相关论文
共 91 条
[1]  
Andrews S., FastQC-A Quality Control Tool for High Throughput Sequence Data
[2]   xCell: digitally portraying the tissue cellular heterogeneity landscape [J].
Aran, Dvir ;
Hu, Zicheng ;
Butte, Atul J. .
GENOME BIOLOGY, 2017, 18
[3]   The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles [J].
Arredouani, M ;
Yang, ZP ;
Ning, YY ;
Qin, GZ ;
Soininen, R ;
Tryggvason, K ;
Kobzik, L .
JOURNAL OF EXPERIMENTAL MEDICINE, 2004, 200 (02) :267-272
[4]   The liver X receptor pathway is highly upregulated in rheumatoid arthritis synovial macrophages and potentiates TLR-driven cytokine release [J].
Asquith, Darren Lee ;
Ballantine, Lucy E. ;
Nijjar, Jagtar Singh ;
Makdasy, Manhal Khuder ;
Patel, Sabina ;
Wright, Pamela B. ;
Reilly, James H. ;
Kerr, Shauna ;
Kurowska-Stolarska, Mariola ;
Gracie, J. Alastair ;
McInnes, Iain B. .
ANNALS OF THE RHEUMATIC DISEASES, 2013, 72 (12) :2024-2031
[5]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[6]   Complement Protein C1q Directs Macrophage Polarization and Limits Inflammasome Activity during the Uptake of Apoptotic Cells [J].
Benoit, Marie E. ;
Clarke, Elizabeth V. ;
Morgado, Pedro ;
Fraser, Deborah A. ;
Tenner, Andrea J. .
JOURNAL OF IMMUNOLOGY, 2012, 188 (11) :5682-5693
[7]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[8]   Tumor necrosis Factor (TNF) Bioactivity at the site of an acute cell-Mediated immune response is Preserved in rheumatoid arthritis Patients responding to anti-TNF Therapy [J].
Byng-Maddick, Rachel ;
Turner, Carolin T. ;
Pollara, Gabriele ;
Ellis, Matthew ;
Guppy, Naomi J. ;
Bell, Lucy C. K. ;
Ehrenstein, Michael R. ;
Noursadeghi, Mahdad .
FRONTIERS IN IMMUNOLOGY, 2017, 8
[9]   A framework for oligonucleotide microarray preprocessing [J].
Carvalho, Benilton S. ;
Irizarry, Rafael A. .
BIOINFORMATICS, 2010, 26 (19) :2363-2367
[10]  
Ceppi Maurizio, 2009, Immunome Res, V5, P5, DOI 10.1186/1745-7580-5-5