Random-matrix theory of thermal conduction in superconducting quantum dots

被引:28
作者
Dahlhaus, J. P. [1 ]
Beri, B. [1 ]
Beenakker, C. W. J. [1 ]
机构
[1] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
关键词
STATISTICAL-THEORY; SYMMETRY CLASSES; LOCALIZATION; TRANSPORT;
D O I
10.1103/PhysRevB.82.014536
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We calculate the probability distribution of the transmission eigenvalues T-n of Bogoliubov quasiparticles at the Fermi level in an ensemble of chaotic Andreev quantum dots. The four Altland-Zirnbauer symmetry classes (determined by the presence or absence of time-reversal and spin-rotation symmetries) give rise to four circular ensembles of scattering matrices. We determine P({T-n}) for each ensemble, characterized by two symmetry indices beta and gamma. For a single d-fold degenerate transmission channel we thus obtain the distribution P(g) proportional to g(-1+beta/2)(1-g)(gamma/2) of the thermal conductance g (in units of d pi(2)k(2)(B)T(0)/6h at low temperatures T-0). We show how this single-channel limit can be reached using a topological insulator or superconductor, without running into the problem of fermion doubling.
引用
收藏
页数:7
相关论文
共 39 条
[1]   The statistical theory of quantum dots [J].
Alhassid, Y .
REVIEWS OF MODERN PHYSICS, 2000, 72 (04) :895-968
[2]   Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures [J].
Altland, A ;
Zirnbauer, MR .
PHYSICAL REVIEW B, 1997, 55 (02) :1142-1161
[3]   MESOSCOPIC TRANSPORT THROUGH CHAOTIC CAVITIES - A RANDOM S-MATRIX THEORY APPROACH [J].
BARANGER, HU ;
MELLO, PA .
PHYSICAL REVIEW LETTERS, 1994, 73 (01) :142-145
[4]  
Beenakker CWJ, 2005, LECT NOTES PHYS, V667, P131
[5]   Random-matrix theory of quantum transport [J].
Beenakker, CWJ .
REVIEWS OF MODERN PHYSICS, 1997, 69 (03) :731-808
[6]  
BEENAKKER CWJ, ARXIV09041432
[7]   Random scattering matrices for Andreev quantum dots with nonideal leads [J].
Beri, B. .
PHYSICAL REVIEW B, 2009, 79 (21)
[8]   Localization and delocalization in dirty superconducting wires [J].
Brouwer, PW ;
Furusaki, A ;
Gruzberg, IA ;
Mudry, C .
PHYSICAL REVIEW LETTERS, 2000, 85 (05) :1064-1067
[9]   Random matrix theory and symmetric spaces [J].
Caselle, M ;
Magnea, U .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 394 (2-3) :41-156
[10]   A new universality class describing the insulating regime of disordered wires with strong spin-orbit scattering [J].
Caselle, M .
MODERN PHYSICS LETTERS B, 1996, 10 (15) :681-688