A convolutional neural network to filter artifacts in spectroscopic MRI

被引:60
作者
Gurbani, Saumya S. [1 ,2 ,3 ,4 ]
Schreibmann, Eduard [1 ,4 ]
Maudsley, Andrew A. [5 ]
Cordova, James Scott [1 ,4 ]
Soher, Brian J. [6 ]
Poptani, Harish [7 ]
Verma, Gaurav [8 ]
Barker, Peter B. [9 ]
Shim, Hyunsuk [1 ,2 ,3 ,4 ,10 ]
Cooper, Lee A. D. [2 ,3 ,4 ,11 ]
机构
[1] Emory Univ, Dept Radiat Oncol, 1701 Uppergate Dr, Atlanta, GA 30322 USA
[2] Emory Univ, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
[4] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[5] Univ Miami, Miller Sch Med, Dept Radiol, Miami, FL 33136 USA
[6] Duke Univ, Dept Radiol, Sch Med, Durham, NC 27710 USA
[7] Univ Liverpool, Inst Translat Med, Liverpool, Merseyside, England
[8] Icahn Sch Med Mt Sinai, Dept Radiol, New York, NY 10029 USA
[9] Johns Hopkins Univ, Dept Radiol & Radiol Sci, Baltimore, MD USA
[10] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
[11] Emory Univ, Sch Med, Dept Biomed Informat, Atlanta, GA USA
基金
美国国家卫生研究院;
关键词
deep learning; machine learning; MR spectroscopic imaging; spectroscopic MRI; RESONANCE-SPECTROSCOPY; H-1; MRSI; QUALITY;
D O I
10.1002/mrm.27166
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Proton MRSI is a noninvasive modality capable of generating volumetric maps of in vivo tissue metabolism without the need for ionizing radiation or injected contrast agent. Magnetic resonance spectroscopic imaging has been shown to be a viable imaging modality for studying several neuropathologies. However, a key hurdle in the routine clinical adoption of MRSI is the presence of spectral artifacts that can arise from a number of sources, possibly leading to false information. Methods: A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled convolutional neural network that analyzed frequency-domain spectra to detect artifacts. Results: When compared with a panel of MRS experts, our convolutional neural network achieved high sensitivity and specificity with an area under the curve of 0.95. A visualization scheme was implemented to better understand how the convolutional neural network made its judgement on single-voxel or multivoxel MRSI, and the convolutional neural network was embedded into a pipeline capable of producing whole-brain spectroscopic MRI volumes in real time. Conclusion: The fully automated method for assessment of spectral quality provides a valuable tool to support clinical MRSI or spectroscopic MRI studies for use in fields such as adaptive radiation therapy planning.
引用
收藏
页码:1765 / 1775
页数:11
相关论文
共 33 条
  • [11] Automatic quality control in clinical 1H MRSI of brain cancer
    de Barros, Nuno Pedrosa
    McKinley, Richard
    Knecht, Urspeter
    Wiest, Roland
    Slotboom, Johannes
    [J]. NMR IN BIOMEDICINE, 2016, 29 (05) : 563 - 575
  • [12] An introduction to ROC analysis
    Fawcett, Tom
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (08) : 861 - 874
  • [13] Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy
    Garcia-Gomez, Juan M.
    Luts, Jan
    Julia -Sape, Margarida
    Krooshof, Patrick
    Tortajada, Salvador
    Vicente Robledo, Javier
    Melssen, Willem
    Fuster-Garcia, Elies
    Olier, Ivan
    Postma, Geert
    Monleon, Daniel
    Moreno-Torres, Angel
    Pujol, Jesus
    Candiota, Ana-Paula
    Carmen Martinez-Bisbal, M.
    Suykens, Johan
    Buydens, Lutgarde
    Celda, Bernardo
    Van Huffel, Sabine
    Arus, Carles
    Robles, Montserrat
    [J]. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2009, 22 (01): : 5 - 18
  • [14] Error images for spectroscopic imaging by LCModel using Cramer-Rao bounds
    Jiru, F
    Skoch, A
    Klose, U
    Grodd, W
    Hajek, M
    [J]. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2006, 19 (01) : 1 - 14
  • [15] A taxonomy of global optimization methods based on response surfaces
    Jones, DR
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2001, 21 (04) : 345 - 383
  • [16] Kingma D. P., P 3 INT C LEARN REPR
  • [17] Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts
    Kreis, R
    [J]. NMR IN BIOMEDICINE, 2004, 17 (06) : 361 - 381
  • [18] Kyathanahally SP, 2017, P 25 ANN M ISMRM HON
  • [19] Quality of clinical brain tumor MR spectra judged by humans and machine learning tools
    Kyathanahally, Sreenath P.
    Mocioiu, Victor
    de Barros, Nuno Pedrosa
    Slotboom, Johannes
    Wright, Alan J.
    Julia-Sape, Margarida
    Arus, Carles
    Kreis, Roland
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (05) : 2500 - 2510
  • [20] Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks
    Lakhani, Paras
    Sundaram, Baskaran
    [J]. RADIOLOGY, 2017, 284 (02) : 574 - 582