A convolutional neural network to filter artifacts in spectroscopic MRI

被引:60
作者
Gurbani, Saumya S. [1 ,2 ,3 ,4 ]
Schreibmann, Eduard [1 ,4 ]
Maudsley, Andrew A. [5 ]
Cordova, James Scott [1 ,4 ]
Soher, Brian J. [6 ]
Poptani, Harish [7 ]
Verma, Gaurav [8 ]
Barker, Peter B. [9 ]
Shim, Hyunsuk [1 ,2 ,3 ,4 ,10 ]
Cooper, Lee A. D. [2 ,3 ,4 ,11 ]
机构
[1] Emory Univ, Dept Radiat Oncol, 1701 Uppergate Dr, Atlanta, GA 30322 USA
[2] Emory Univ, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
[4] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[5] Univ Miami, Miller Sch Med, Dept Radiol, Miami, FL 33136 USA
[6] Duke Univ, Dept Radiol, Sch Med, Durham, NC 27710 USA
[7] Univ Liverpool, Inst Translat Med, Liverpool, Merseyside, England
[8] Icahn Sch Med Mt Sinai, Dept Radiol, New York, NY 10029 USA
[9] Johns Hopkins Univ, Dept Radiol & Radiol Sci, Baltimore, MD USA
[10] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
[11] Emory Univ, Sch Med, Dept Biomed Informat, Atlanta, GA USA
基金
美国国家卫生研究院;
关键词
deep learning; machine learning; MR spectroscopic imaging; spectroscopic MRI; RESONANCE-SPECTROSCOPY; H-1; MRSI; QUALITY;
D O I
10.1002/mrm.27166
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Proton MRSI is a noninvasive modality capable of generating volumetric maps of in vivo tissue metabolism without the need for ionizing radiation or injected contrast agent. Magnetic resonance spectroscopic imaging has been shown to be a viable imaging modality for studying several neuropathologies. However, a key hurdle in the routine clinical adoption of MRSI is the presence of spectral artifacts that can arise from a number of sources, possibly leading to false information. Methods: A deep learning model was developed that was capable of identifying and filtering out poor quality spectra. The core of the model used a tiled convolutional neural network that analyzed frequency-domain spectra to detect artifacts. Results: When compared with a panel of MRS experts, our convolutional neural network achieved high sensitivity and specificity with an area under the curve of 0.95. A visualization scheme was implemented to better understand how the convolutional neural network made its judgement on single-voxel or multivoxel MRSI, and the convolutional neural network was embedded into a pipeline capable of producing whole-brain spectroscopic MRI volumes in real time. Conclusion: The fully automated method for assessment of spectral quality provides a valuable tool to support clinical MRSI or spectroscopic MRI studies for use in fields such as adaptive radiation therapy planning.
引用
收藏
页码:1765 / 1775
页数:11
相关论文
共 33 条
  • [1] [Anonymous], 2015, IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2015.123
  • [2] Bergstra JS., 2011, ADV NEURAL INFORM PR, P2546
  • [3] Bishop C. M., 2006, PATTERN RECOGN, V4, DOI DOI 10.1007/978-0-387-45528-0
  • [4] A systematic study of the class imbalance problem in convolutional neural networks
    Buda, Mateusz
    Maki, Atsuto
    Mazurowski, Maciej A.
    [J]. NEURAL NETWORKS, 2018, 106 : 249 - 259
  • [5] The Segmentation of the Left Ventricle of the Heart From Ultrasound Data Using Deep Learning Architectures and Derivative-Based Search Methods
    Carneiro, Gustavo
    Nascimento, Jacinto C.
    Freitas, Antonio
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (03) : 968 - 982
  • [6] Semi-Automated Volumetric and Morphological Assessment of Glioblastoma Resection with Fluorescence-Guided Surgery
    Cordova, J. Scott
    Gurbani, Saumya S.
    Holder, Chad A.
    Olson, Jeffrey J.
    Schreibmann, Eduard
    Shi, Ran
    Guo, Ying
    Shu, Hui-Kuo G.
    Shim, Hyunsuk
    Hadjipanayis, Costas G.
    [J]. MOLECULAR IMAGING AND BIOLOGY, 2016, 18 (03) : 454 - 462
  • [7] Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients
    Cordova, James S.
    Shu, Hui-Kuo G.
    Liang, Zhongxing
    Gurbani, Saumya S.
    Cooper, Lee A. D.
    Holder, Chad A.
    Olson, Jeffrey J.
    Kairdolf, Brad
    Schreibmann, Eduard
    Neill, Stewart G.
    Hadjipanayis, Constantinos G.
    Shim, Hyunsuk
    [J]. NEURO-ONCOLOGY, 2016, 18 (08) : 1180 - 1189
  • [8] Dai W., 2016, ARXIV161000087
  • [9] Machine Learning of Three-dimensional Right Ventricular Motion Enables Outcome Prediction in Pulmonary Hypertension: A Cardiac MR Imaging Study
    Dawes, Timothy J. W.
    de Marvao, Antonio
    Shi, Wenzhe
    Fletcher, Tristan
    Watson, Geoffrey M. J.
    Wharton, John
    Rhodes, Christopher J.
    Howard, Luke S. G. E.
    Gibbs, J. Simon R.
    Rueckert, Daniel
    Cook, Stuart A.
    Wilkins, Martin R.
    O'Regan, Declan P.
    [J]. RADIOLOGY, 2017, 283 (02) : 381 - 390
  • [10] Improving labeling efficiency in automatic quality control of MRSI data
    de Barros, Nuno Pedrosa
    McKinley, Richard
    Wiest, Roland
    Slotboom, Johannes
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (06) : 2399 - 2405