Ground state solutions for a class of elliptic Dirichlet problems involving the p(x)-Laplacian

被引:4
作者
Ge, Bin [1 ]
Zhuge, Xiang-Wu [1 ]
Yuan, Wen-Shuo [1 ]
机构
[1] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
p(x)-Laplacian equation; Variable exponent Sobolev space; Ground state solutions; Multiple solutions; Nehari manifold; 35J60; 35J70; 35D30; VARIABLE EXPONENT; EXISTENCE; MULTIPLICITY; FUNCTIONALS; PRINCIPLE; EQUATIONS;
D O I
10.1007/s13324-021-00562-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the existence and multiplicity of ground state solutions for a class of p(x)-Laplacian Dirichlet problem in bounded domains. Firstly, combining constraint variational method and quantitative deformation lemma, we prove that the equation possesses at least one least energy sign-changing solution with exactly two nodal domains. Finally, using a strong maximum principle, we obtain three ground state solutions (one positive, one negative, and one sign-changing) for this problem.
引用
收藏
页数:25
相关论文
共 34 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions [J].
Antontsev, SN ;
Shmarev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) :515-545
[3]  
Antontsev SN., 2006, ANN U FERRARA SEZ 7, V52, P19, DOI DOI 10.1007/S11565-006-0002-9
[4]  
Avci M., 2013, ELECTRON J DIFFER EQ, V14, P1
[5]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[6]   Existence and multiplicity of weak solutions for elliptic Dirichlet problems with variable exponent [J].
Bonanno, Gabriele ;
Chinni, Antonia .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (02) :812-827
[7]   MULTIPLE SOLUTIONS FOR ELLIPTIC PROBLEMS INVOLVING THE p(x)-LAPLACIAN [J].
Bonanno, Gabriele ;
Chinni, Antonia .
MATEMATICHE, 2011, 66 (01) :105-113
[8]   Existence of solutions for p(x)-Laplacian problems on a bounded domain [J].
Chabrowski, J ;
Fu, YQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (02) :604-618
[9]  
Chang K.C., 1996, Critical Point Theory and Applications
[10]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406