Motivic multiple zeta values and the block filtration

被引:1
作者
Keilthy, Adam [1 ]
机构
[1] Max Planck Inst Math, Bonn, Germany
关键词
Multiple zeta values; Motivic periods; Mixed Tate motives; Polylogarithms; Shuffle algebras;
D O I
10.1016/j.jnt.2021.10.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the block filtration, defined by Brown based on the work of Charlton, to all motivic multiple zeta values, and study relations compatible with this filtration. We construct a Lie algebra describing relations among motivic multiple zeta values modulo terms of lower block degree, proving Charlton's cyclic insertion conjecture in this structure, and showing the existence of a 'block shuffle' relation, a dihedral symmetry, and differential relation. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:883 / 919
页数:37
相关论文
共 22 条
[1]  
Bar-Natan D, 1998, SELECTA MATH, V4, P183
[2]   On the derivation representation of the fundamental Lie algebra of mixed elliptic motives [J].
Baumard S. ;
Schneps L. .
Annales mathématiques du Québec, 2017, 41 (1) :43-62
[3]  
Borwein J.M., 1998, ELECTRON J COMB, V5
[4]   Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops [J].
Broadhurst, DJ ;
Kreimer, D .
PHYSICS LETTERS B, 1997, 393 (3-4) :403-412
[5]  
Brown F, 2016, LETT CHARLTON
[6]  
Brown F., 2017, Forum Math. Sigma, V5, P1
[7]  
Brown F, 2017, Arxiv, DOI arXiv:1709.02765
[8]  
Brown F, 2020, Arxiv, DOI arXiv:1301.3053
[9]  
Brown F, 2014, Arxiv, DOI arXiv:1407.5165
[10]   Mixed Tate motives over Z [J].
Brown, Francis .
ANNALS OF MATHEMATICS, 2012, 175 (02) :949-976