Polychromatic colorings of 1-regular and 2-regular subgraphs of complete graphs

被引:2
作者
Goldwasser, John [1 ]
Hansen, Ryan [1 ]
机构
[1] West Virginia Univ, Morgantown, WV 26506 USA
关键词
Polychromatic coloring; Long cycles; CYCLES;
D O I
10.1016/j.disc.2022.112896
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If G is a graph and Eta is a set of subgraphs of G, we say that an edge-coloring of G is Eta-polychromatic if every graph from Eta gets all colors present in G on its edges. The Eta-polychromatic number of G, denoted by polyH(G), is the largest number of colors in an Eta-polychromatic coloring. In this paper we determine polyH(G) exactly when G is a complete graph on n vertices, q is a fixed nonnegative integer, and Eta is one of three families: the family of all matchings spanning n - q vertices, the family of all 2-regular graphs spanning at least n - q vertices, and the family of all cycles of length precisely n - q. There are connections with an extension of results on Ramsey numbers for cycles in a graph. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 13 条
[1]   Turan's theorem in the hypercube [J].
Alon, Noga ;
Krech, Anja ;
Szabo, Tibor .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) :66-72
[2]   Polychromatic colorings of complete graphs with respect to 1-, 2-factors and Hamiltonian cycles [J].
Axenovich, Maria ;
Goldwasser, John ;
Hansen, Ryan ;
Lidicky, Bernard ;
Martin, Ryan R. ;
Offner, David ;
Talbot, John ;
Young, Michael .
JOURNAL OF GRAPH THEORY, 2018, 87 (04) :660-671
[3]  
Bialostocki A., 1983, ARS COMBINATORIA, V16, P39
[4]   COVER-DECOMPOSITION AND POLYCHROMATIC NUMBERS [J].
Bollobas, Bela ;
Pritchard, David ;
Rothvoss, Thomas ;
Scott, Alex .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (01) :240-256
[5]  
Bondy A., 1973, J COMBIN THEORY B, V14, P46
[6]   EXISTENCE OF SPECIFIED CYCLES IN COMPLEMENTARY GRAPHS [J].
CHARTRAND, G ;
SCHUSTER, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 77 (06) :995-+
[7]   A variant of the classical Ramsey problem [J].
Erdos, P ;
Gyarfas, A .
COMBINATORICA, 1997, 17 (04) :459-467
[8]  
Faudree R. J., 1974, Discrete Mathematics, V8, P313, DOI 10.1016/0012-365X(74)90151-4
[9]   Thoroughly dispersed colorings [J].
Goddard, Wayne ;
Henning, Michael A. .
JOURNAL OF GRAPH THEORY, 2018, 88 (01) :174-191
[10]  
Goldwasser J, 2018, J COMB, V9, P631