A novel approach for skin lesion symmetry classification with a deep learning model

被引:14
作者
Talavera-Martinez, Lidia [1 ,2 ]
Bibiloni, Pedro [1 ,2 ]
Giacaman, Aniza [4 ]
Taberner, Rosa [5 ]
Del Pozo Hernando, Luis Javier [4 ]
Gonzalez-Hidalgo, Manuel [1 ,2 ,3 ]
机构
[1] Univ Balearic Isl, SCOPIA Res Grp, Palma De Mallorca 07122, Spain
[2] Hlth Res Inst Balearic Isl IdISBa, Palma De Mallorca 07010, Spain
[3] Lab Artificial Intelligence Applicat LAIA UIB, Palma De Mallorca 07122, Spain
[4] Son Espases Univ Hosp, Dermatol Dept, Palma De Mallorca 07120, Spain
[5] Son Llatzer Univ Hosp, Dermatol Dept, Palma De Mallorca 07198, Spain
关键词
Symmetry; Skin lesion; Deep neural networks; Dermoscopy; Image processing; EPILUMINESCENCE MICROSCOPY; ABCD RULE; DERMATOSCOPY; ASYMMETRY; DIAGNOSIS; IMAGES; SYSTEM; RECOGNITION; DERMOSCOPY; MELANOMAS;
D O I
10.1016/j.compbiomed.2022.105450
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Skin cancer has become a public health problem due to its increasing incidence. However, the malignancy risk of the lesions can be reduced if diagnosed at an early stage. To do so, it is essential to identify particular characteristics such as the symmetry of lesions. In this work, we present a novel approach for skin lesion symmetry classification of dermoscopic images based on deep learning techniques. We use a CNN model, which classifies the symmetry of a skin lesion as either "fully asymmetric", "symmetric with respect to one axis", or "symmetric with respect to two axes". Moreover, we introduce a new dataset of labels for 615 skin lesions. During the experimentation framework, we also evaluate whether it is beneficial to rely on transfer learning from pretrained CNNs or traditional learning-based methods. As a result, we present a new simple, robust and fast classification pipeline that outperforms methods based on traditional approaches or pre-trained networks, with a weighted-average F1-score of 64.5%.
引用
收藏
页数:10
相关论文
共 39 条
[1]   Towards the automatic detection of skin lesion shape asymmetry, color variegation and diameter in dermoscopic images [J].
Ali, Abder-Rahman ;
Li, Jingpeng ;
O'Shea, Sally Jane .
PLOS ONE, 2020, 15 (06)
[2]  
[Anonymous], 2015, DERMOSCOPY IMAGE ANA
[3]   Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions - Comparison of the ABCD rule of dermatoscopy and a new 7-Point checklist based on pattern analysis [J].
Argenziano, G ;
Fabbrocini, G ;
Carli, P ;
De Giorgi, V ;
Sammarco, E ;
Delfino, M .
ARCHIVES OF DERMATOLOGY, 1998, 134 (12) :1563-1570
[4]   Dermoscopy of pigmented skin lesions:: Results of a consensus meeting via the Internet [J].
Argenziano, G ;
Soyer, HP ;
Chimenti, S ;
Talamini, R ;
Corona, R ;
Sera, F ;
Binder, M ;
Cerroni, L ;
De Rosa, G ;
Ferrara, G ;
Hofmann-Wellenhof, R ;
Landthater, M ;
Menzies, SW ;
Pehamberger, H ;
Piccolo, D ;
Rabinovitz, HS ;
Schiffner, R ;
Staibano, S ;
Stolz, W ;
Bartenjev, I ;
Blum, A ;
Braun, R ;
Cabo, H ;
Carli, P ;
De Giorgi, V ;
Fleming, MG ;
Grichnik, JM ;
Grin, CM ;
Halpern, AC ;
Johr, R ;
Katz, B ;
Kenet, RO ;
Kittler, H ;
Kreusch, J ;
Malvehy, J ;
Mazzocchetti, G ;
Oliviero, M ;
Özdemir, F ;
Peris, K ;
Perotti, R ;
Perusquia, A ;
Pizzichetta, MA ;
Puig, S ;
Rao, B ;
Rubegni, P ;
Saida, T ;
Scalvenzi, M ;
Seidenari, S ;
Stanganelli, I ;
Tanaka, M .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2003, 48 (05) :679-693
[5]  
Argenziano G., INTERACTIVE ATLAS DE
[6]   A Survey of Feature Extraction in Dermoscopy Image Analysis of Skin Cancer [J].
Barata, Catarina ;
Celebi, M. Emre ;
Marques, Jorge S. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (03) :1096-1109
[7]  
Chollet F., 2018, Deep learning with R
[8]  
Clawson K. M., 2007, Proceedings 2007 IEEE International Conference on Image Processing, ICIP 2007, P453
[9]   Geometric and form feature recognition tools applied to a design for assembly methodology [J].
Coma, O ;
Mascle, C ;
Véron, P .
COMPUTER-AIDED DESIGN, 2003, 35 (13) :1193-1210
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848