Critical exponents and blow-up rate for a nonlinear diffusion equation with logarithmic boundary flux

被引:7
作者
Li, Zhongping [1 ,2 ]
Mu, Chunlai [1 ]
机构
[1] Chongqing Univ, Coll Math & Phys, Chongqing 400044, Peoples R China
[2] China W Normal Univ, Coll Math & Informat, Nanchong 637002, Peoples R China
关键词
Critical exponents; Blow-up; Blow-up rate; Nonlinear diffusion equation; Logarithmic boundary flux; POROUS-MEDIUM EQUATION; CRITICAL FUJITA EXPONENTS; LINEAR HEAT-EQUATIONS; PARABOLIC EQUATIONS; INSTABILITY; STABILITY; THEOREMS;
D O I
10.1016/j.na.2010.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the critical global existence exponent and the critical Fujita exponent for the nonlinear diffusion equation u(t) = (log(sigma) (1 + u)u(x))(x), in R(+) x (0, +infinity), subject to a logarithmic boundary flux - log(sigma) (1 + u)u(x) (0, t) = (1 + u) log(p) (1 + u) (0, t), t is an element of (0, +infinity), furthermore give the blow-up rate for the nonglobal solutions. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:933 / 939
页数:7
相关论文
共 23 条
[1]  
ANDERSON JR, 1993, J DIFFER EQUATIONS, V104, P386, DOI 10.1006/jdeq.1993.1078
[2]   STABILITY AND INSTABILITY FOR SOLUTIONS OF THE CONVECTIVE POROUS-MEDIUM EQUATION WITH A NONLINEAR FORCING AT THE BOUNDARY .1. [J].
ANDERSON, JR .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 104 (02) :361-385
[3]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[4]  
ARONSON DG, 1986, LECT NOTES MATH, V1224, P1
[5]   Blow-up and global solutions for nonlinear reaction-diffusion equations with Neumann boundary conditions [J].
Ding, Juntang ;
Li, Shengjia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (03) :507-514
[6]   Blow-up with logarithmic nonlinearities [J].
Ferreira, Raul ;
de Pablo, Arturo ;
Rossi, Julio D. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 240 (01) :196-215
[7]  
Fujita H., 1966, J. Fac. Sci. Univ. Tokyo Sec. 1A Math, V16, P105
[8]  
Galaktionov V. A., 1980, Soviet Physics - Doklady, V25, P458
[9]  
Galaktionov VA, 2002, DISCRETE CONT DYN-A, V8, P399
[10]   Blow-up for quasilinear heat equations described by means of nonlinear Hamilton-Jacobi equations [J].
Galaktionov, VA ;
Vazquez, JL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (01) :1-40