Solid State and Solution Nitrate Photochemistry: Photochemical Evolution of the Solid State Lattice

被引:31
作者
Asher, Sanford A. [1 ]
Tuschel, David D. [1 ]
Vargson, Todd A. [1 ]
Wang, Luling [1 ]
Geib, Steven J. [1 ]
机构
[1] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
关键词
RESONANCE RAMAN-SPECTROSCOPY; AQUEOUS-SOLUTION; SYMMETRY-BREAKING; HIGH EXPLOSIVES; CROSS-SECTIONS; INTENSITIES; EXCITATION; GEOMETRY; SPECTRA; NITRITE;
D O I
10.1021/jp200406q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We examined the deep UV 229 nm photochemistry of NaNO3 in solution and in the solid state. In aqueous solution excitation within the deep UV NO3- strong pi -> pi* transition causes the photochemical reaction NO3- -> NO2- + O center dot. We used UV resonance Raman spectroscopy to examine the photon dose dependence of the NO2- band intensities and measure a photochemical quantum yield of 0.04 at pH 6.5. We also examined the response of solid NaNO3 samples to 229 nm excitation and also observe formation of NO2-. The quantum yield is much smaller at similar to 10(-8). The solid state NaNO3 photochemistry phenomena appear complex by showing a significant dependence on the UV excitation flux and dose. At low flux/dose conditions NO2- resonance Raman bands appear, accompanied by perturbed NO3- bands, indicating stress in the NaNO3 lattice. Higher flux/dose conditions show less lattice perturbation but SEM shows surface eruptions that alleviate the stress induced by the photochemistry. Higher flux/dose measurements cause cratering and destruction of the NaNO3 surface as the surface layers are converted to NO2-. Modest laser excitation UV beams excavate surface layers in the solid NaNO3 samples. At the lowest incident fluxes a pressure buildup competes with effusion to reach a steady state giving rise to perturbed NO3- bands. Increased fluxes result in pressures that cause the sample to erupt, relieving the pressure.
引用
收藏
页码:4279 / 4287
页数:9
相关论文
共 40 条
[1]   A fluorescence turn-on mechanism to detect high explosives RDX and PETN [J].
Andrew, Trisha L. ;
Swager, Timothy M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (23) :7254-+
[2]  
[Anonymous], 2010, IN CRYST STRUCT DAT
[3]   UV RAMAN EXCITATION PROFILES OF IMIDAZOLE, IMIDAZOLIUM, AND WATER [J].
ASHER, SA ;
MURTAUGH, JL .
APPLIED SPECTROSCOPY, 1988, 42 (01) :83-90
[4]   UV RESONANCE RAMAN-SPECTROSCOPY USING A NEW CW LASER SOURCE - CONVENIENCE AND EXPERIMENTAL SIMPLICITY [J].
ASHER, SA ;
BORMETT, RW ;
CHEN, XG ;
LEMMON, DH ;
CHO, N ;
PETERSON, P ;
ARRIGONI, M ;
SPINELLI, L ;
CANNON, J .
APPLIED SPECTROSCOPY, 1993, 47 (05) :628-633
[5]   PHOTOLYSIS OF AQUEOUS NITRATE SOLUTIONS [J].
BAYLISS, NS ;
BUCAT, RB .
AUSTRALIAN JOURNAL OF CHEMISTRY, 1975, 28 (09) :1865-1878
[6]   Kinetics of NO and NO2 evolution from illuminated frozen nitrate solutions [J].
Boxe, CS ;
Colussi, AJ ;
Hoffmann, MR ;
Perez, IM ;
Murphy, JG ;
Cohen, RC .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (10) :3578-3583
[7]   IONIC INTERACTIONS IN CRYSTALS - INFRARED AND RAMAN SPECTRA OF POWDERED CA(NO3)2, SR(NO3)2, BA(NO3)2, AND PB(NO3)2 [J].
BROOKER, MH ;
IRISH, DE ;
BOYD, GE .
JOURNAL OF CHEMICAL PHYSICS, 1970, 53 (03) :1083-&
[8]  
BROOKER MH, 1978, J PHYS CHEM SOLIDS, V39, P657, DOI 10.1016/0022-3697(78)90181-6
[9]   Steady-state and transient ultraviolet resonance Raman spectrometer for the 193-270 nm spectral region [J].
Bykov, S ;
Lednev, I ;
Ianoul, A ;
Mikhonin, A ;
Munro, C ;
Asher, SA .
APPLIED SPECTROSCOPY, 2005, 59 (12) :1541-1552
[10]  
*CRC, 1978, CRC HDB CHEM PHYS, pB167