Solid State and Solution Nitrate Photochemistry: Photochemical Evolution of the Solid State Lattice

被引:31
作者
Asher, Sanford A. [1 ]
Tuschel, David D. [1 ]
Vargson, Todd A. [1 ]
Wang, Luling [1 ]
Geib, Steven J. [1 ]
机构
[1] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA
关键词
RESONANCE RAMAN-SPECTROSCOPY; AQUEOUS-SOLUTION; SYMMETRY-BREAKING; HIGH EXPLOSIVES; CROSS-SECTIONS; INTENSITIES; EXCITATION; GEOMETRY; SPECTRA; NITRITE;
D O I
10.1021/jp200406q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We examined the deep UV 229 nm photochemistry of NaNO3 in solution and in the solid state. In aqueous solution excitation within the deep UV NO3- strong pi -> pi* transition causes the photochemical reaction NO3- -> NO2- + O center dot. We used UV resonance Raman spectroscopy to examine the photon dose dependence of the NO2- band intensities and measure a photochemical quantum yield of 0.04 at pH 6.5. We also examined the response of solid NaNO3 samples to 229 nm excitation and also observe formation of NO2-. The quantum yield is much smaller at similar to 10(-8). The solid state NaNO3 photochemistry phenomena appear complex by showing a significant dependence on the UV excitation flux and dose. At low flux/dose conditions NO2- resonance Raman bands appear, accompanied by perturbed NO3- bands, indicating stress in the NaNO3 lattice. Higher flux/dose conditions show less lattice perturbation but SEM shows surface eruptions that alleviate the stress induced by the photochemistry. Higher flux/dose measurements cause cratering and destruction of the NaNO3 surface as the surface layers are converted to NO2-. Modest laser excitation UV beams excavate surface layers in the solid NaNO3 samples. At the lowest incident fluxes a pressure buildup competes with effusion to reach a steady state giving rise to perturbed NO3- bands. Increased fluxes result in pressures that cause the sample to erupt, relieving the pressure.
引用
收藏
页码:4279 / 4287
页数:9
相关论文
共 40 条
  • [1] A fluorescence turn-on mechanism to detect high explosives RDX and PETN
    Andrew, Trisha L.
    Swager, Timothy M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (23) : 7254 - +
  • [2] [Anonymous], 2010, IN CRYST STRUCT DAT
  • [3] UV RAMAN EXCITATION PROFILES OF IMIDAZOLE, IMIDAZOLIUM, AND WATER
    ASHER, SA
    MURTAUGH, JL
    [J]. APPLIED SPECTROSCOPY, 1988, 42 (01) : 83 - 90
  • [4] UV RESONANCE RAMAN-SPECTROSCOPY USING A NEW CW LASER SOURCE - CONVENIENCE AND EXPERIMENTAL SIMPLICITY
    ASHER, SA
    BORMETT, RW
    CHEN, XG
    LEMMON, DH
    CHO, N
    PETERSON, P
    ARRIGONI, M
    SPINELLI, L
    CANNON, J
    [J]. APPLIED SPECTROSCOPY, 1993, 47 (05) : 628 - 633
  • [5] PHOTOLYSIS OF AQUEOUS NITRATE SOLUTIONS
    BAYLISS, NS
    BUCAT, RB
    [J]. AUSTRALIAN JOURNAL OF CHEMISTRY, 1975, 28 (09) : 1865 - 1878
  • [6] Kinetics of NO and NO2 evolution from illuminated frozen nitrate solutions
    Boxe, CS
    Colussi, AJ
    Hoffmann, MR
    Perez, IM
    Murphy, JG
    Cohen, RC
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (10) : 3578 - 3583
  • [7] IONIC INTERACTIONS IN CRYSTALS - INFRARED AND RAMAN SPECTRA OF POWDERED CA(NO3)2, SR(NO3)2, BA(NO3)2, AND PB(NO3)2
    BROOKER, MH
    IRISH, DE
    BOYD, GE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1970, 53 (03) : 1083 - &
  • [8] BROOKER MH, 1978, J PHYS CHEM SOLIDS, V39, P657, DOI 10.1016/0022-3697(78)90181-6
  • [9] Steady-state and transient ultraviolet resonance Raman spectrometer for the 193-270 nm spectral region
    Bykov, S
    Lednev, I
    Ianoul, A
    Mikhonin, A
    Munro, C
    Asher, SA
    [J]. APPLIED SPECTROSCOPY, 2005, 59 (12) : 1541 - 1552
  • [10] *CRC, 1978, CRC HDB CHEM PHYS, pB167