Utilization of Metallurgy-Beneficiation Combination Strategy to Decrease TiO2 in Titanomagnetite Concentrate before Smelting

被引:2
作者
Chen, Pan [1 ,2 ]
Sun, Yameng [1 ,2 ]
Yang, Lei [1 ]
Xu, Rui [1 ,2 ]
Luo, Yangyong [3 ]
Wang, Xianyun [3 ]
Cao, Jian [1 ,2 ,4 ]
Wang, Jinggang [1 ,2 ]
机构
[1] Cent South Univ, Sch Minerals Proc & Bioengn, Changsha 410083, Peoples R China
[2] Cent South Univ, Key Lab Hunan Prov Clean & Efficient Utilizat Str, Changsha 410083, Peoples R China
[3] Sichuan Anning Iron & Titanium Co Ltd, Panzhihua 617200, Peoples R China
[4] State Key Lab Mineral Proc, Beijing 100814, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金;
关键词
titanomagnetite concentrate; metallurgy-beneficiation combination; roasting; magnetic separation; HONGGE VANADIUM TITANOMAGNETITE; DIRECT REDUCTION; TITANIUM; RECOVERY; CHROMIUM; IRON; SLAG; MAGNETITE; BEHAVIOR; SEPARATION;
D O I
10.3390/min11121419
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Excessive TiO2 in titanomagnetite concentrates (TC) causes unavoidable problems in subsequent smelting. At present, this issue cannot be addressed using traditional mineral processing technology. Herein, a strategy of metallurgy-beneficiation combination to decrease the TiO2 grade in TC before smelting was proposed. Roasting TC with calcium carbonate (CaCO3) together with magnetic separation proved to be a viable strategy. Under optimal conditions (roasting temperature = 1400 degrees C, CaCO3 ratio = 20%, and magnetic intensity = 0.18 T), iron and titanium was separated efficiently (Fe grade: 56.6 wt.%; Fe recovery: 70 wt.%; TiO2 grade 3 wt.%; TiO2 removal: 84.1 wt.%). X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy analysis were used to study the mechanisms. The results showed that Ti in TC could react with CaO to form CaTiO3, and thermodynamic calculations provided a relevant theoretical basis. In sum, the metallurgy-beneficiation combination strategy was proven as an effective method to decrease unwanted TiO2 in TC.
引用
收藏
页数:10
相关论文
共 40 条
[1]  
Alkynes T, 2016, J IRON STEEL RES INT, V23, P367, DOI [10.1016/S1006-706X(16)30102-9, DOI 10.1016/S1006-706X(16)30102-9]
[2]   An Integrated Model for Ilmenite, Al-Spinel, and Corundum Exsolutions in Titanomagnetite from Oxide-Rich Layers of the Lac Dore Complex (Quebec, Canada) [J].
Arguin, Jean-Philippe ;
Page, Philippe ;
Barnes, Sarah-Jane ;
Girard, Rejean ;
Duran, Charley .
MINERALS, 2018, 8 (11)
[3]   Magnesite concentration technology and caustic - calcined product from Turkish magnesite middlings by calcination and magnetic separation [J].
Bentli, Ismail ;
Erdogan, Necmettin ;
Elmas, Numan ;
Kaya, Muammer .
SEPARATION SCIENCE AND TECHNOLOGY, 2017, 52 (06) :1129-1142
[4]  
Bose D.K., 1992, MIN PROCESS EXTRACT, V10, P217, DOI 10.1080/08827509208914087
[5]   Reduction kinetics and mechanism of pellets prepared from high chromium vanadium–titanium magnetite concentrate [J].
Cheng, G.-J. ;
Xue, X.-X. ;
Liu, J.-X. ;
Jiang, T. ;
Duan, P.-N. .
Transactions of the Institutions of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, 2017, 126 (03) :125-132
[6]   Sintering Characteristics of Titanium Containing Iron Ores [J].
Dehghan-Manshadi, Ali ;
Manuel, James ;
Hapugoda, Sarath ;
Ware, Natalie .
ISIJ INTERNATIONAL, 2014, 54 (10) :2189-2195
[7]   Investigation of Thermodynamic Equilibrium of MSWI Fly Ash during High-temperature Treatment [J].
Ding, Jian .
PROGRESS IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-4, 2013, 610-613 :1871-1875
[8]   Development of Intensified Technologies of Vanadium-Bearing Titanomagnetite Smelting [J].
Fu Wei-guo ;
Wen Yong-cai ;
Xie Hong-en .
JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2011, 18 (04) :7-+
[9]   Review of Vanadium Production Part I: Primary Resources [J].
Gao, Feng ;
Olayiwola, Afolabi Uthmon ;
Liu, Biao ;
Wang, Shaona ;
Du, Hao ;
Li, Jianzhong ;
Wang, Xindong ;
Chen, Donghui ;
Zhang, Yi .
MINERAL PROCESSING AND EXTRACTIVE METALLURGY REVIEW, 2022, 43 (04) :466-488
[10]   Influence of B2O3 and TiO2 on Viscosity of Titanium-Bearing Blast Furnace Slag [J].
Gao, Yanhong ;
Bian, Lingtao ;
Liang, Zhongyu .
STEEL RESEARCH INTERNATIONAL, 2015, 86 (04) :386-390