Discrete element method simulation of segregation pattern in a sinter cooler charging chute system

被引:7
作者
Izard, Edouard [1 ]
Moreau, Maxime [1 ]
Ravier, Pascal [2 ]
机构
[1] ArcelorMittal Global R&D, Voie Romaine, BP30320, F-57283 Maizieres Les Metz, France
[2] ArcelorMittal Mediterranee, F-13776 Fos Sur Mer, France
来源
PARTICUOLOGY | 2021年 / 59卷
关键词
Discrete element method; Segregation; Sinter; Industrial application; THEORETICAL DEVELOPMENTS; DEM SIMULATION;
D O I
10.1016/j.partic.2020.08.004
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper presents the simulation of material flows in the large-scale charging chute of Fos-Sur-Mer sinter cooler plant by using three-dimensional Discrete Element Method (DEM). As a result of granular flows in the chute, segregation patterns are formed at the charging exit. The sinter material is modelled as dry particles and their size distribution in the simulation is larger than in the reality to keep the simulation in a reasonable run time. Suitable calibration tests are performed to specify the DEM contact parameters in order to replicate the behavior observed during experiments with the virtual sinter particles. The DEM model is found to be in good agreement with a segregation measurement. A sensitivity analysis using different particle sizes shows that the segregation patterns are not affected by the different sizes used for fine particles. Furthermore, the filling ratio in the charging system is varied in the model and shows that a high filling ratio leads to less segregation when exiting the charging chute. The DEM model is used to analyze the granular flows in the charging chute, understand the material behavior and optimize the sinter cooling efficiency. (c) 2020 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 42
页数:9
相关论文
共 23 条
[1]  
Andreotti B., 2013, Granular Media: Between Fluid and Solid, DOI [10.1017/CBO9781139541008, DOI 10.1017/CBO9781139541008]
[2]  
Astier J, 2007, TECHNIQUES INGENIEUR
[3]   Contact parameter estimation for DEM simulation of iron ore pellet handling [J].
Barrios, Gabriel K. P. ;
de Carvalho, Rodrigo M. ;
Kwade, Arno ;
Tavares, Luis Marcelo .
POWDER TECHNOLOGY, 2013, 248 :84-93
[4]   Identification of DEM simulation parameters by Artificial Neural Networks and bulk experiments [J].
Benvenuti, L. ;
Kloss, C. ;
Pirker, S. .
POWDER TECHNOLOGY, 2016, 291 :456-465
[5]   Segregation of particulate solids: Experiments and DEM simulations [J].
Combarros, M. ;
Feise, H. J. ;
Zetzener, H. ;
Kwade, A. .
PARTICUOLOGY, 2014, 12 :25-32
[6]   DISCRETE NUMERICAL-MODEL FOR GRANULAR ASSEMBLIES [J].
CUNDALL, PA ;
STRACK, ODL .
GEOTECHNIQUE, 1979, 29 (01) :47-65
[7]   A GPU-based DEM approach for modelling of particulate systems [J].
Gan, J. Q. ;
Zhou, Z. Y. ;
Yu, A. B. .
POWDER TECHNOLOGY, 2016, 301 :1172-1182
[8]   The London - Van Der Waals attraction between spherical particles [J].
Hamaker, HC .
PHYSICA, 1937, 4 :1058-1072
[9]  
Hertz H., 1882, Ann. Phys, V253, P177, DOI [10.1002/andp.18822531002https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.18822531002, DOI 10.1002/ANDP.18822531002HTTPS://ONLINELIBRARY.WILEY.COM/DOI/PDF/10.1002/ANDP.18822531002]
[10]  
Hertz H.R., 1895, Gesammelte Werke, V1