Holographic beam shaping of partially coherent light

被引:15
作者
Barre, Nicolas [1 ]
Jesacher, Alexander [1 ]
机构
[1] Med Univ Innsbruck, Inst Biomed Phys, Mullerstr 44, A-6020 Innsbruck, Austria
基金
奥地利科学基金会;
关键词
26;
D O I
10.1364/OL.444074
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an algorithmic approach for holographic shaping of partially coherent light, which is described by a mode expansion containing thousands of individual modes. Using gradient descent and algorithmic differentiation, our algorithm is able to find a set of axially separated phase patterns such that each mode undergoes an individually optimized transformation with respect to the formation of a user-defined target intensity distribution. We demonstrate numerically and experimentally that a tandem of two phase patterns can achieve any intensity profile transformation with good accuracy. Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
引用
收藏
页码:425 / 428
页数:4
相关论文
共 26 条
  • [1] Synthetic three-dimensional atomic structures assembled atom by atom
    Barredo, Daniel
    Lienhard, Vincent
    De Leseleuc, Sylvain
    Lahaye, Thierry
    Browaeys, Antoine
    [J]. NATURE, 2018, 561 (7721) : 79 - 82
  • [2] APPLICATIONS OF THE TANDEM COMPONENT - AN ELEMENT WITH OPTIMUM LIGHT EFFICIENCY
    BARTELT, HO
    [J]. APPLIED OPTICS, 1985, 24 (22): : 3811 - 3816
  • [3] Beam shaping and high-speed, cylinder-lens-free beam guiding using acousto-optical deflectors without additional compensation optics
    Bechtold, Peter
    Hohenstein, Ralph
    Schmidt, Michael
    [J]. OPTICS EXPRESS, 2013, 21 (12): : 14627 - 14635
  • [4] Computer-generated stratified diffractive optical elements
    Borgsmüller, S
    Noehte, S
    Dietrich, C
    Kresse, T
    Männer, R
    [J]. APPLIED OPTICS, 2003, 42 (26) : 5274 - 5283
  • [5] Born M., 2013, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, V7th edn, DOI 10.1017/CBO9781139644181
  • [6] Wirtinger Holography for Near-Eye Displays
    Chakravarthula, Praneeth
    Peng, Yifan
    Kollin, Joel
    Fuchs, Henry
    Heide, Felix
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (06):
  • [7] Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays
    Deng, Yuanbo
    Chu, Daping
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Computer generated optical volume elements by additive manufacturing
    Dinc, Niyazi Ulas
    Lim, Joowon
    Kakkava, Eirini
    Moser, Christophe
    Psaltis, Demetri
    [J]. NANOPHOTONICS, 2020, 9 (13) : 4173 - 4181
  • [9] Beam shaping for ultrafast materials processing
    Flamm, Daniel
    Grossmann, Daniel Guenther
    Jenne, Michael
    Zimmermann, Felix
    Kleiner, Jonas
    Kaiser, Myriam
    Hellstern, Julian
    Tillkorn, Christoph
    Kumkar, Malte
    [J]. LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XXI, 2019, 10904
  • [10] Laguerre-Gaussian mode sorter
    Fontaine, Nicolas K.
    Ryf, Roland
    Chen, Haoshuo
    Neilson, David T.
    Kim, Kwangwoong
    Carpenter, Joel
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)