Propagation of CMEs in the interplanetary medium:: Numerical and analytical results

被引:4
作者
González-Esparza, JA
Cantó, J
González, RF
Lara, A
Raga, AC
机构
[1] Univ Nacl Autonoma Mexico, Ciudad Univ, Inst Geofis, Mexico City 045210, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Astron Inst, Mexico City 045210, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City, DF, Mexico
来源
HELIOSPHERE AT SOLAR MAXIMUM | 2003年 / 32卷 / 04期
关键词
D O I
10.1016/S0273-1177(03)00334-X
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We study the propagation of coronal mass ejections (CMEs) from near the Sun to 1 AU by comparing results from two different models: a 1-D, hydrodynamic, single-fluid, numerical model (Gonzalez-Esparza et al., 2003a) and an analytical model to study the dynamical evolution of supersonic velocity's fluctuations at the base of the solar wind applied to the propagation of CMEs (Canto et al., 2002). Both models predict that a fast CME moves initially in the inner heliosphere with a quasi-constant velocity (which has an intermediate value between the initial CME velocity and the ambient solar wind velocity ahead) until a 'critical distance' at which the CME, velocity begins to decelerate approaching to the ambient solar wind velocity. This critical distance depends on the characteristics of the CME (initial velocity, density and temperature) as well as of the ambient solar wind. Given typical parameters based on observations, this critical distance can vary from 0.3 to beyond 1 AU from the Sun. These results explain the radial evolution of the velocity of fast CMEs in the inner heliosphere inferred from interplanetary scintillation (IPS) observations (Manoharan et al., 2001, 2003, Tokumaru et al., 2003). On the other hand, the numerical results show that a fast CME and its associated interplanetary (IP) shock follow different heliocentric evolutions: the IP shock always propagates faster than its CME driver and the latter begins to decelerate well before the shock. (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:513 / 518
页数:6
相关论文
共 16 条
[1]   Analytic solutions to the problem of jets with time-dependent injection velocities [J].
Cantó, J ;
Raga, AC ;
D'Alessio, P .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 313 (04) :656-662
[2]  
CANTO J, 2002, UNPUB ASTROPHYS NOV
[3]   INTERPLANETARY STUDIES - PROPAGATION OF DISTURBANCES BETWEEN THE SUN AND THE MAGNETOSPHERE [J].
DRYER, M .
SPACE SCIENCE REVIEWS, 1994, 67 (3-4) :363-419
[4]  
Gonzalez R. F., 2002, THESIS U NACL AUTONO
[5]   A numerical study on the acceleration and transit time of coronal mass ejections in the interplanetary medium -: art. no. 1039 [J].
González-Esparza, JA ;
Lara, A ;
Pérez-Tijerina, E ;
Santillán, A ;
Gopalswamy, N .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A1)
[6]  
GONZALEZESPARZA JA, 2003, IN PRESS AIP C P
[7]   Interplanetary acceleration of coronal mass ejections [J].
Gopalswamy, N ;
Lara, A ;
Lepping, RP ;
Kaiser, ML ;
Berdichevsky, D ;
St Cyr, OC .
GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (02) :145-148
[8]   Predicting the 1-AU arrival times of coronal mass ejections [J].
Gopalswamy, N ;
Lara, A ;
Yashiro, S ;
Kaiser, ML ;
Howard, RA .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2001, 106 (A12) :29207-29217
[9]   The acceleration of slow coronal mass ejections in the high-speed solar wind [J].
Gosling, JT ;
Riley, P .
GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (21) :2867-2870
[10]   NUMERICAL SIMULATION OF FLARE-GENERATED DISTURBANCES IN SOLAR WIND [J].
HUNDHAUSEN, AJ ;
GENTRY, RA .
JOURNAL OF GEOPHYSICAL RESEARCH, 1969, 74 (11) :2908-+