Radiomics-based machine learning analysis and characterization of breast lesions with multiparametric diffusion-weighted MR

被引:21
作者
Sun, Kun [1 ]
Jiao, Zhicheng [2 ]
Zhu, Hong [1 ]
Chai, Weimin [1 ]
Yan, Xu [3 ]
Fu, Caixia [4 ]
Cheng, Jie-Zhi [5 ]
Yan, Fuhua [1 ]
Shen, Dinggang [5 ,6 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Med, Ruijin Hosp, Dept Radiol, Shanghai, Peoples R China
[2] Brown Univ, Alpert Med Sch, Dept Diagnost Imaging, Providence, RI 02912 USA
[3] Siemens Shanghai Magnet Resonance Ltd, Sci Mkt, Shanghai, Peoples R China
[4] Siemens Shenzhen Magnet Resonance Ltd, MR Applicat Dev, Shenzhen, Peoples R China
[5] Shanghai United Imaging Intelligence Co Ltd, Dept Res & Dev, Shanghai, Peoples R China
[6] Shanghai Tech Univ, Sch BME, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast cancer; Diffusion-weighted MRI; Machine learning; Random forest; WATER DIFFUSION; PREOPERATIVE PREDICTION; ASSOCIATION; IVIM;
D O I
10.1186/s12967-021-03117-5
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background This study aimed to evaluate the utility of radiomics-based machine learning analysis with multiparametric DWI and to compare the diagnostic performance of radiomics features and mean diffusion metrics in the characterization of breast lesions. Methods This retrospective study included 542 lesions from February 2018 to November 2018. One hundred radiomics features were computed from mono-exponential (ME), biexponential (BE), stretched exponential (SE), and diffusion-kurtosis imaging (DKI). Radiomics-based analysis was performed by comparing four classifiers, including random forest (RF), principal component analysis (PCA), L1 regularization (L1R), and support vector machine (SVM). These four classifiers were trained on a training set with 271 patients via ten-fold cross-validation and tested on an independent testing set with 271 patients. The diagnostic performance of the mean diffusion metrics of ME (mADC(all b), mADC(0-1000)), BE (mD, mD*, mf), SE (mDDC, m alpha), and DKI (mK, mD) were also calculated for comparison. The area under the receiver operating characteristic curve (AUC) was used to compare the diagnostic performance. Results RF attained higher AUCs than L1R, PCA and SVM. The AUCs of radiomics features for the differential diagnosis of breast lesions ranged from 0.80 (BE_D*) to 0.85 (BE_D). The AUCs of the mean diffusion metrics ranged from 0.54 (BE_mf) to 0.79 (ME_mADC(0-1000)). There were significant differences in the AUCs between the mean values of all diffusion metrics and radiomics features of AUCs (all P < 0.001) for the differentiation of benign and malignant breast lesions. Of the radiomics features computed, the most important sequence was BE_D (AUC: 0.85), and the most important feature was FO-10 percentile (Feature Importance: 0.04). Conclusions The radiomics-based analysis of multiparametric DWI by RF enables better differentiation of benign and malignant breast lesions than the mean diffusion metrics.
引用
收藏
页数:10
相关论文
共 40 条
  • [1] Machine learning for neuroirnaging with scikit-learn
    Abraham, Alexandre
    Pedregosa, Fabian
    Eickenberg, Michael
    Gervais, Philippe
    Mueller, Andreas
    Kossaifi, Jean
    Gramfort, Alexandre
    Thirion, Bertrand
    Varoquaux, Gael
    [J]. FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [2] High-Risk Breast Lesions: A Machine Learning Model to Predict Pathologic Upgrade and Reduce Unnecessary Surgical Excision
    Bahl, Manisha
    Barzilay, Regina
    Yedidia, Adam B.
    Locascio, Nicholas J.
    Yu, Lili
    Lehman, Constance D.
    [J]. RADIOLOGY, 2018, 286 (03) : 810 - 818
  • [3] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
    Bejnordi, Babak Ehteshami
    Veta, Mitko
    van Diest, Paul Johannes
    van Ginneken, Bram
    Karssemeijer, Nico
    Litjens, Geert
    van der Laak, Jeroen A. W. M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22): : 2199 - 2210
  • [4] Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model
    Bennett, KM
    Schmainda, KM
    Bennett, R
    Rowe, DB
    Lu, HB
    Hyde, JS
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (04) : 727 - 734
  • [5] Radiomics Based on Adapted Diffusion Kurtosis Imaging Helps to Clarify Most Mammographic Findings Suspicious for Cancer
    Bickelhaupt, Sebastian
    Jaeger, Paul Ferdinand
    Laun, Frederik Bernd
    Lederer, Wolfgang
    Daniel, Heidi
    Kuder, Tristan Anselm
    Wuesthof, Lorenz
    Paech, Daniel
    Bonekamp, David
    Radbruch, Alexander
    Delorme, Stefan
    Schlemmer, Heinz-Peter
    Steudle, Franziska Hildegard
    Maier-Hein, Klaus Hermann
    [J]. RADIOLOGY, 2018, 287 (03) : 761 - 770
  • [6] Prediction of malignancy by a radiomic signature from contrast agent-free diffusion MRI in suspicious breast lesions found on screening mammography.
    Bickelhaupt, Sebastian
    Paech, Daniel
    Kickingereder, Philipp
    Steudle, Franziska
    Lederer, Wolfgang
    Daniel, Heidi
    Goetz, Michael
    Gaehlert, Nils
    Tichy, Diana
    Wiesenfarth, Manuel
    Laun, Frederik B.
    Maier-Hein, Klaus H.
    Schlemmer, Heinz-Peter
    Bonekamp, David
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 46 (02) : 604 - 616
  • [7] Readout-segmented Echo-pIanar Imaging Improves the Diagnostic Performance of Diffusion-weighted MR Breast Examinations at 3.0 T
    Bogner, Wolfgang
    Pinker-Domenig, Katja
    Bickel, Hubert
    Chmelik, Marek
    Weber, Michael
    Helbich, Thomas H.
    Trattnig, Siegfried
    Gruber, Stephan
    [J]. RADIOLOGY, 2012, 263 (01) : 64 - 76
  • [8] Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values
    Bonekamp, David
    Kohl, Simon
    Wiesenfarth, Manuel
    Schelb, Patrick
    Radtke, Jan Philipp
    Goetz, Michael
    Kickingereder, Philipp
    Yaqubi, Kaneschka
    Hitthaler, Bertram
    Gaehlert, Nils
    Kuder, Tristan Anselm
    Deister, Fenja
    Freitag, Martin
    Hohenfellner, Markus
    Hadaschik, Boris A.
    Schlemmer, Heinz-Peter
    Maier-Hein, Klaus H.
    [J]. RADIOLOGY, 2018, 289 (01) : 128 - 137
  • [9] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [10] Differentiating axillary lymph node metastasis in invasive breast cancer patients: A comparison of radiomic signatures from multiparametric breast MR sequences
    Chai, Ruimei
    Ma, He
    Xu, Mingjie
    Arefan, Dooman
    Cui, Xiaoyu
    Liu, Yi
    Zhang, Lina
    Wu, Shandong
    Xu, Ke
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 50 (04) : 1125 - 1132