Zero-field remote detection of NMR with a microfabricated atomic magnetometer

被引:110
作者
Ledbetter, M. P. [2 ]
Savukov, I. M. [2 ]
Budker, D. [2 ,3 ]
Shah, V. [4 ]
Knappe, S. [4 ]
Kitching, J. [4 ]
Michalak, D. J. [1 ]
Xu, S. [1 ]
Pines, A. [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA
[4] Natl Inst Stand & Technol, Div Time & Frequency, Boulder, CO 80305 USA
关键词
microfluidics; signal-to-noise ratio; mass-limited sample;
D O I
10.1073/pnas.0711505105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate remote detection of nuclear magnetic resonance (NMR) with a microchip sensor consisting of a microfluidic channel and a microfabricated vapor cell (the heart of an atomic magnetometer). Detection occurs at zero magnetic field, which allows operation of the magnetometer in the spin-exchange relaxation-free (SERF) regime and increases the proximity of sensor and sample by eliminating the need for a solenoid to create a leading field. We achieve pulsed NMR linewidths of 26 Hz, limited, we believe, by the residence time and flow dispersion in the encoding region. In a fully optimized system, we estimate that for 1 s of integration, 7 x 10(13) protons in a volume of 1 mm(3), prepolarized in a 10-kG field, can be detected with a signal-to-noise ratio of approximate to 3. This level of sensitivity is competitive with that demonstrated by microcoils in 100-kG magnetic fields, without requiring superconducting magnets.
引用
收藏
页码:2286 / 2290
页数:5
相关论文
共 26 条
[1]  
[Anonymous], 2004, 36th Annual Precise Time and Time Interval
[2]   Spin coherence transfer in chemical transformations monitored by remote detection NMR [J].
Anwar, M. Sabieh ;
Hilty, Christian ;
Chu, Chester ;
Bouchard, Louis-S. ;
Pierce, Kimberly L. ;
Pines, Alexander .
ANALYTICAL CHEMISTRY, 2007, 79 (07) :2806-2811
[3]   Polarization of 3He by spin exchange with optically pumped Rb and K vapors [J].
Baranga, ABA ;
Appelt, S ;
Romalis, MV ;
Erickson, CJ ;
Young, AR ;
Cates, GD ;
Happer, W .
PHYSICAL REVIEW LETTERS, 1998, 80 (13) :2801-2804
[4]   FOREIGN-GAS-INDUCED CESIUM HYPERFINE RELAXATION [J].
BEVERINI, N ;
MINGUZZI, P ;
STRUMIA, F .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 4 (02) :550-&
[5]   Optical magnetometry [J].
Budker, Dmitry ;
Romalis, Michael .
NATURE PHYSICS, 2007, 3 (04) :227-234
[6]   3D MR microscopy with resolution 3.7 μm by 3.3 μm by 3.3 μm [J].
Ciobanu, L ;
Seeber, DA ;
Pennington, CH .
JOURNAL OF MAGNETIC RESONANCE, 2002, 158 (1-2) :178-182
[7]   Signal enhancement in HPLC/microcoil NMR using automated column trapping [J].
Djukovic, Danijel ;
Liu, Shuhui ;
Henry, Ian ;
Tobias, Brian ;
Raftery, Daniel .
ANALYTICAL CHEMISTRY, 2006, 78 (20) :7154-7160
[8]   Dispersion measurements using time-of-flight remote detection MRI [J].
Granwehr, Josef ;
Harel, Elad ;
Hilty, Christian ;
Garcia, Sandra ;
Chavez, Lana ;
Pines, Alex ;
Sen, Pabitra N. ;
Song, Yi-Qiao .
MAGNETIC RESONANCE IMAGING, 2007, 25 (04) :449-452
[9]   Resolving chemical shift spectra with a low-field NMR relaxometer [J].
Grunin, L ;
Blümich, B .
CHEMICAL PHYSICS LETTERS, 2004, 397 (4-6) :306-308
[10]   Time-of-flight flow imaging of two-component flow inside a microfluidic chip [J].
Harel, Elad ;
Hilty, Christian ;
Koen, Katherine ;
McDonnell, Erin E. ;
Pines, Alex .
PHYSICAL REVIEW LETTERS, 2007, 98 (01)