An eigenvalue approach to the risk sensitive control problem in near monotone case

被引:19
作者
Biswas, Anup [1 ]
机构
[1] TIFR Ctr Applicable Math, Bangalore 560065, Karnataka, India
关键词
Risk sensitive control; Controlled diffusions; Nonlinear eigenvalue problem; Hamilton-Jacobi-Bellman equation; Optimal Markov control; TIME MARKOV-PROCESSES; INFINITE-HORIZON RISK;
D O I
10.1016/j.sysconle.2010.12.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Risk sensitive control problem under near monotonicity condition is considered. We prove existence of a solution to the corresponding Hamilton-Jacobi-Bellman equation by an eigenvalue approach. Existence of an optimal control has also been proved. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 184
页数:4
相关论文
共 13 条
[1]  
ARAPOSTATHIS A, ERGODIC CON IN PRESS
[2]   On positive recurrence of constrained diffusion processes [J].
Atar, R ;
Budhiraja, A ;
Dupuis, P .
ANNALS OF PROBABILITY, 2001, 29 (02) :979-1000
[3]  
BISWAS A, APPL MATH O IN PRESS
[4]   Risk-Sensitive Control with Near Monotone Cost [J].
Biswas, Anup ;
Borkar, V. S. ;
Kumar, K. Suresh .
APPLIED MATHEMATICS AND OPTIMIZATION, 2010, 62 (02) :145-163
[5]  
Borkar V.S., 1989, PITMAN RES NOTES MAT, V203
[6]  
Di Masi GB, 2000, SYST CONTROL LETT, V40, P15, DOI 10.1016/S0167-6911(99)00118-8
[7]   Risk-sensitive control of discrete-time Markov processes with infinite horizon [J].
Di Masi, GB ;
Stettner, L .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 38 (01) :61-78
[8]   Infinite horizon risk sensitive control of discrete time Markov processes under minorization property [J].
Di Masi, Giovanni B. ;
Stettner, Lukasz .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (01) :231-252
[9]   RISK-SENSITIVE CONTROL ON AN INFINITE TIME HORIZON [J].
FLEMING, WH ;
MCENEANEY, WM .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (06) :1881-1915
[10]  
GILBARG D, 2000, CLASSICS MATH