Prospects and applications of synergistic noble metal nanoparticle-bacterial hybrid systems

被引:13
作者
Vazquez-Arias, Alba [1 ,2 ]
Perez-Juste, Jorge [1 ,2 ]
Pastoriza-Santos, Isabel [1 ,2 ]
Bodelon, Gustavo [1 ,2 ]
机构
[1] Univ Vigo, Dept Quim Fis, CINBIO, Campus Univ Lagoas, Vigo 36310, Spain
[2] SERGAS UVIGO, Galicia Hlth Res Inst IIS Galicia Sur, Vigo 36312, Spain
关键词
EXTRACELLULAR ELECTRON-TRANSFER; GOLD NANOPARTICLES; SURFACE; STRATEGIES; TOXICITY; CELLS; PHOTOSYNTHESIS; DEPOSITION; NANORODS; DELIVERY;
D O I
10.1039/d1nr04961e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hybrid systems composed of living cells and nanomaterials have been attracting great interest in various fields of research ranging from materials science to biomedicine. In particular, the interfacing of noble metal nanoparticles and bacterial cells in a single architecture aims to generate hybrid systems that combine the unique physicochemical properties of the metals and biological attributes of the microbial cells. While the bacterial cells provide effector and scaffolding functions, the metallic component endows the hybrid system with multifunctional capabilities. This synergistic effort seeks to fabricate living materials with improved functions and new properties that surpass their individual components. Herein, we provide an overview of this research field and the strategies for obtaining hybrid systems, and we summarize recent biological applications, challenges and current prospects in this exciting new arena.
引用
收藏
页码:18054 / 18069
页数:16
相关论文
共 127 条
[1]   Self-Assembled Glycobis(acrylamide)-Stabilized Gold Nanoparticles for Fluorescent Turn-on Sensing of Lectin and Escherichia coli [J].
Ajish, Juby K. ;
Kanagare, Anant B. ;
Kumar, K. S. Ajish ;
Subramanian, Mahesh ;
Ballal, Anand Damodar ;
Kumar, Manmohan .
ACS APPLIED NANO MATERIALS, 2020, 3 (02) :1307-1317
[2]   Bacteria-mediated delivery of nanoparticles and cargo into cells [J].
Akin, Demir ;
Sturgis, Jennifer ;
Ragheb, Kathy ;
Sherman, Debby ;
Burkholder, Kristin ;
Robinson, J. Paul ;
Bhunia, Arun K. ;
Mohammed, Sulma ;
Bashir, Rashid .
NATURE NANOTECHNOLOGY, 2007, 2 (07) :441-449
[3]   Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation [J].
All, Angelo Homayoun ;
Zeng, Xiao ;
Teh, Daniel Boon Loong ;
Yi, Zhigao ;
Prasad, Ankshita ;
Ishizuka, Toru ;
Thakor, Nitish ;
Hiromu, Yawo ;
Liu, Xiaogang .
ADVANCED MATERIALS, 2019, 31 (41)
[4]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[5]  
[Anonymous], 2014, Int Sch Res Notices, DOI DOI 10.1093/IMRN/RNS215
[6]   Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector [J].
Bahrulolum, Howra ;
Nooraei, Saghi ;
Javanshir, Nahid ;
Tarrahimofrad, Hossein ;
Mirbagheri, Vasighe Sadat ;
Easton, Andrew J. ;
Ahmadian, Gholamreza .
JOURNAL OF NANOBIOTECHNOLOGY, 2021, 19 (01)
[7]   Bacterial Biohybrid Microswimmers [J].
Bastos-Arrieta, Julio ;
Revilla-Guarinos, Ainhoa ;
Uspal, William E. ;
Simmchen, Juliane .
FRONTIERS IN ROBOTICS AND AI, 2018, 5
[8]   Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems [J].
Berry, V ;
Gole, A ;
Kundu, S ;
Murphy, CJ ;
Saraf, RF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (50) :17600-17601
[9]   Self-assembly of nanoparticles on live bacterium: An avenue to fabricate electronic devices [J].
Berry, V ;
Saraf, RF .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (41) :6668-6673
[10]   Highly selective, electrically conductive monolayer of nanoparticles on live bacteria [J].
Berry, V ;
Rangaswamy, S ;
Saraf, RF .
NANO LETTERS, 2004, 4 (05) :939-942